
Intermediate Programming Exam 2

1. (5 point) What is your name?

2. (15 points) Add a copy constructor to the Lib
object below that makes a deep copy.
(Remember that the Java String class is
immutable. You may assume that the Book
class has a suitable copy constructor.)

class Lib
{
 ArrayList<String> titles;
 ArrayList<Book> books;

 Lib()
 {

titles = new ArrayList<String>();
books = new ArrayList<Book>();

 }

void addBook(String title, Book b)
{

titles.add(title);
books.add(b);

}

}

3. (10 points) Below is code for a node in a
linked list. Please complete the copy
constructor in this class to use recursion to
make a deep copy of the list of nodes that
begins with node “n”.

class Node {
 int val;

Node next;

 Node(int v) { val = v; }

Node(Node n)
{

}
}

4. (5 points) What is polymorphism?
• A way of casting objects to different

types.
• It is when the compiler forces you to

implement abstract methods declared in
the super class.

• A way of calling the super constructor.
• It is when a call behaves differently,

depending on the object it operates upon.
• Using a catch block to suppress

exceptions.
• A debugging technique involving the

printing of all variable types.
• A fancy name for inheritance.
• Using an iterator to visit all elements in a

collection.

5. (5 points) What would be the output of this
code?

class Stone extends Object
{

Stone() {
System.out.print("t");

}

String crack(String h) {
System.out.print("a" + h);
return "z";

}
}

class Granite extends Stone {
Granite(String g) {

if(g.equals("o"))
System.out.print("r");

}

void fall(String f) {
System.out.print("b");
crack(f);

}
}

class Main {
public static void main(String[] args)
{

Granite q = new Granite("a");
q.fall("c");
System.out.print("k");

}
}

6. (5 points) ConcurrentModificationException
is thrown when
• You modify a variable that already

references an object.
• Generic types are used improperly.
• An iterator detects that the contents of its

collection have been changed.
• You fail to use the “-g” flag to build your

code.
• Code is modified while you are

debugging.
• You modify an object to which multiple

variables refer.

7. (5 points) Suppose a class named Alpha
extends a class named Beta. Which of these
lines will cause a compile error?
• Beta a = new Alpha();
• Alpha b = new Beta();

8. (10 points) If you break at a breakpoint on the
“break here” line,

class Mambo
{

int a = 0;
int b = 1;

public static void main(String[] args)
{

int c = 2;
Mambo x = new Mambo();
Mambo y = new Mambo();
Mambo z = new Mambo();
System.out.println(“break here”);

}
}

How many Mambo refs will be on the stack?

How many integers will be on the stack?

How many Mambo objects will be on the heap?

How many integers will be on the heap?

9. (5 points) Consider this code:
class Cheese {

Mold d;
Milk w = null;

Cheese() {
Mold d = new Mold();

}

void eat(int chews) {
 if(chews < 0)
 throw new Exception(“!”);

 if(this.w == null)
 System.out.pring(“Nooo!”);

 int i;
 d.grow(chews + i);
}

}

A NullReferenceException is thrown in the
“eat” method. Which of the following will fix
the problem? (Circle one)

• Declare eat to be “static”.
• Change “Mold d = new Mold();” to

“d = new Mold();”
• Change “Milk w = null;” to “Milk w

= new Milk();”.
• Change “int i;” to “int i = 4;”.
• Pass a value for chews greater than zero.
• change the “==” to “!=”.

10. (5 points) Circle the true pair of statements:
• Java is a static typed language. Javascript

is a dynamic typed language.
• Java is dynamic typed language.

Javascript is static typed language.

11. (5 points) What will be the output of this
Java function if you call f(8)?

static void f(int n)
{

System.out.print(n);
if(n > 4)

f(1);
System.out.print(n);
if(n > 3)

f(n / 2);
}

12. (5 points) In the space to the right, write a
class named Tom that inherits from the Cat
class (below). The Tom class should not be
abstract.

abstract class Cat
{
 int lives;

 Cat(int n)
 {
 lives = n;
 }

 abstract String name();

 boolean setLives(int n)
 {
 lives = n;
 }
}

13. (5 points) Give the Tom class a constructor
that takes zero parameters, and initially
gives it 9 lives. (Note that the Cat class
constructor requires one parameter.)

14. (5 points) Add a method to your Tom class
that decrements the number of lives. If the
number of lives reaches 0, return “false” to
indicate that the Tom instance has died. If
the Tom instance already has 0 lives when

the method is called, throw a
RuntimeException to indicate that Tom is
already completely dead.

15. (10 points) Use overriding to ensure that the
setter cannot be used to give more lives to
Tom objects with zero lives. (But when a
Tom object has more than zero lives, the
setter should still allow the user to adjust its
number of lives.)

