
Intermediate Programming Practice Exam 2

1. (10 points) What is your name?

2. (10 points) Please complete the copy
constructor in this Java class to make a deep
copy.

class Stoofs
{

int x;
double y;

Stoofs(Stoofs that)
{

x = that.x;
y = that.y;

}
}

3. (5 points) Please add a copy constructor to
this Java class that makes a deep copy.

class Jiggy
{

static int z = 0;
String s;
double y;

Jiggy()
{

s = "somestring";
z++;
y = 3.14159;

}

Jiggy(Jiggy j)
{

y = j.y;
s = new String(j.s);

}

}

4. (10 points) Please complete the copy
constructor in this Java class to make a deep
copy. (Use the Stoofs copy constructor that
you wrote for problem #2 as needed.)

class Llama
{

ArrayList<Stoofs> al;

Llama()
{
 al = new ArrayList<Stoofs>();
}

void add(Stoofs s)
{
 al.add(s);
}

Llama(Llama l)
{
 al = new ArrayList<Stoofs>();
 for(int i = 0; i < l.al.size(); i++)
 {

add(new Stoofs(l.al.get(i)));
 }
}

}

5. (5 points) What will be the output of this Java
function if you call f(11)?

void f(int n)
{

if(n > 7)
f(1);

System.out.print(n);
if(n > 4)

f(n / 2);
System.out.print(n);

}

1111522511

6. (5 points) Version control software, such as
Git, enables developers to:
• parse HTML into a document object

model.
• track and merge changes made to code.
• protect code from being plagiarized.
• dynamically modify the HTML DOM.
• chat online with other developers.
• resolve concurrency issues.
• translate bytecode into machine-level

instructions.
• compile Java code into Javascript.

7. (15 points) For each pair of statements, circle
the one that describes the generally better coding
practice. (It takes 5 circles to achieve the correct
answer.)

• Write your whole program in one or two
big methods/procedures/functions.

• Organize your code into many small
methods/procedures/functions.

• Test each method immediately after you
write it.

• Implement as much of your program as
possible, then debug it.

• Avoid making deep copies of large
objects unless you have a reason.

• Always make a deep copy of an object
before you modify it.

• Use member variables whenever
possible. Use local variables only when
needed.

• Use local variables whenever possible.
Use member variables only when
needed.

• Design your methods to work no matter
what values are passed to them.

• Start each method with some code that
checks the parameters, and throws an
exception if any unexpected values are
found.

8. (15 points) On the back of this page, write a
Java class named Vehicle. Write a class named
Tank that extends Vehicle. Add a member
variable to Tank that stores the quantity of
ammo in the Tank. Write a class named Bike
that extends Vehicle. Add a member variable to
Bike that stores its color as a String. Add a static
method to the Tank class named “charge” that
accepts an ArrayList<Vehicle> as a parameter.
Using polymorphism, implement this method to
decrement the ammo in each tank, and change
the color of each bike to “red”. (Do not use
“instanceof”.) Return the number of tanks in the
ArrayList. You don’t need to allocate the
ArrayList.

abstract class Vehicle
{

abstract int upd();
}

class Tank extends Vehicle
{

int ammo;

int upd()
{

ammo--;
return 1;

}

static int
charge(ArrayList<Vehicle> al)

{
int c = 0;
for(int i = 0; i <

al.size(); i++)
{

Vehicle v =
al.get(i);

c += v.upd();
}
return c;

}

}

class Bike extends Vehicle
{

String color;

int upd()
{

color = “red”;
return 0;

}
}

9. (5 points) What would be the output of this
code?

class Alpha extends Object
{
 String epsilon(String s)
 {

System.out.print("Q");
if(s.equals("U"))

throw new RuntimeException("I");
return "C";

 }
}

class Beta extends Alpha {
Beta(String s) throws Exception {
 System.out.print("H");
 System.out.print(epsilon("E"));
}

void delta() {
System.out.print("K");

}
}

class Gamma {
Gamma(int w) {

System.out.print("F");
}

public static void main(String[] args) {
try{

Beta b = new Beta("T");
b.delta();

} catch(Exception e) {
System.out.print("O");

}
System.out.print("X");

}
}

HQCKX

10. (10 points) Please insert synchronization
blocks into the following Java code to make it
thread-safe (but don't synchronize more code
than is necessary). Assume that only one
instance of this class exists, but there can be any
number of threads that call any of its methods in
parallel.
class BankAccount {

private String owner;
private String address;
private double balance;

private Object lock1;
private Object lock2;
private Object lock3;

BankAccount() {

lock1 = new Object();
lock2 = new Object();
lock3 = new Object();

}

void deposit(double amount) {

 if(amount < 0) throw new
 RuntimeException(“huh?”);

Synchronized(lock1) {

 double tmp = this.balance;

 tmp += amount;

 this.balance = tmp;

}
}

double getCurrentBalance() {

synchronized(lock1) {
 return this.balance;

}

}

void withdraw(double amount) {

 if(amount < 0) throw new
 RuntimeException(“huh?”);

Synchronized(lock1) {
 this.balance -= amount;

}

}

void changeOwner(String newName,
String newAddress) {

Synchreonided(lock2)
{

 this.owner = newName;

 this.address = newAddress;
}

}
}

11. (5 points) What do you need to do to grant
everyone a legal right to use code that you post
on the web?

• Remove any notices containing
“Copyright (C)” from the code.

• Require a log-in form to access the code,
but display the password to everyone.

• Make your code proprietary.
• Nothing. If it's on the web, the law

assumes you intended people to use it.
• Add a license to the code that grants the

legal rights you want them to have.
• Add a click-through End User License

Agreement to the code.Submit a form to
the Library of Congress indicating your
intent to grant rights to copy.

12. (5 points) What is likely to occur if you
synchronize (or lock) large portions of code that
do not really need to be locked?

• A compiler error.
• A race condition.
• A runtime exception.
• Incorrect computations.
• Threads will run concurrently.
• A thread may starve.

