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Good old online backpropagation for plain multilayer perceptrons yields
a very low 0.35% error rate on the MNIST handwritten digits benchmark.
All we need to achieve this best result so far are many hidden layers,
many neurons per layer, numerous deformed training images to avoid
overfitting, and graphics cards to greatly speed up learning.

1 Introduction

Automatic handwriting recognition is of academic and commercial interest.
Current algorithms are already quite good at learning to recognize hand-
written digits. Post offices use them to sort letters and banks to read per-
sonal checks. MNIST (LeCun, Bottou, Bengio, & Haffner, 1998) is the most
widely used benchmark for isolated handwritten digit recognition. More
than a decade ago, artificial neural networks called multilayer perceptrons
(MLPs; Werbos, 1974; LeCun, 1985; Rumelhart, Hinton, & Williams, 1986)
were among the first classifiers tested on MNIST. Most had few layers or
few artificial neurons (units) per layer (LeCun et al., 1998), but apparently
back then, they were the biggest feasible MLPs, trained when CPU cores
were at least 20 times slower than today. A more recent MLP with a sin-
gle hidden layer of 800 units achieved 0.70% error (Simard, Steinkraus, &
Platt, 2003). However, more complex methods listed on the MNIST Web
page always seemed to outperform MLPs, and the general trend went to-
ward more and more complex variants of support vector machines (SVMs;
Decoste & Schölkopf, 2002) and combinations of neural networks (NN) and
SVMs (Lauer, Suen, & Bloch, 2007). Convolutional neural networks (CNNs)
achieved a record-breaking 0.40% error rate (Simard et al., 2003) using novel
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elastic training image deformations. Recent methods pretrain each hidden
CNN layer one by one in an unsupervised fashion (this seems promising
especially for small training sets), then use supervised learning to achieve
a 0.39% error rate (Ranzato, Poultney, Chopra, & LeCun, 2006; Ranzato,
Huang, Boureau, & LeCun, 2007). The biggest MLP so far (Salakhutdinov
& Hinton, 2007) also was pretrained without supervision, then piped its
output into another classifier to achieve an error of 1% without domain-
specific knowledge. Deep MLPs initialized by unsupervised pretraining
were also successfully applied to speech recognition (Mohamed, Dahl, &
Hinton, 2009).

Are all these complexifications of plain MLPs really necessary? Can’t
one simply train really big plain MLPs on MNIST? One reason is that at
first glance, deep MLPs do not seem to work better than shallow networks
(Bengio, Lamblin, Popovici, & Larochelle, 2006). Training them is hard,
as backpropagated gradients quickly vanish exponentially in the number
of layers (Hochreiter, 1991; Hochreiter, Bengio, Frasconi, & Schmidhuber,
2001; Hinton, 2007), just as the first recurrent neural networks (Hochreiter &
Schmidhuber, 1997). Indeed, previous deep networks successfully trained
with backpropagation (BP) either had few free parameters due to weight
sharing (LeCun et al., 1998; Simard et al., 2003) or used unsupervised,
layer-wise pretraining (Hinton & Salakhutdinov, 2006; Bengio et al., 2006;
Ranzato, Poultney, Chopra, & LeCun, 2006). But is it really true that deep
BP-MLPs do not work at all, or do they just need more training time? How
can this be tested considering that online BP for hundreds or thousands of
epochs on large MLPs may take weeks or months on standard serial com-
puters? But can’t one parallelize it? On computer clusters, this is hard due
to communication latencies between individual computers. Parallelization
across training cases and weight updates for mini-batches (Nair & Hinton,
2009) might alleviate this problem, but still leaves the task of parallelizing
fully online BP. Only GPUs are capable of such finely grained parallelism.
Multithreading on a multicore processor is not easy either. We may speed
up BP using streaming single instruction, multiple data extensions either
manually or by setting appropriate compiler flags. The maximum theoreti-
cal speed-up under single precision floating point, however, is four, which
is not enough. And MNIST is large: its 60,000 images take almost 50 MB,
too much to fit in the L2/L3 cache of any current processor. This requires
continually accessing data in considerably slower RAM. To summarize,
currently it is next to impossible to train big MLPs on CPUs.

We will show how to overcome all these problems by training large, deep
MLPs on graphics cards.

2 Data

MNIST consists of two data sets: one for training (60,000 images) and one
for testing (10,000 images). Many studies divide the training set into two
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sets consisting of 50,000 images for training and 10,000 for validation. Our
network is trained on slightly deformed images, continually generated in
online fashion; hence, we may use the whole un-deformed training set for
validation without wasting training images. Pixel intensities of the origi-
nal gray-scale images range from 0 (background) to 255 (maximum fore-
ground intensity); 28 × 28 = 784 pixels per image get mapped to real values
pixel intensity

127.5 − 1.0 in [−1.0, 1.0] and are fed into the neural network input
layer.

3 Architectures

We train five MLPs with two to nine hidden layers and varying numbers
of hidden units. Mostly, but not always, the number of hidden units per
layer decreases toward the output layer (see Table 1). There are 1.34 to 12.11
million free parameters (or weights, or synapses).

We use standard online BP (Russell & Norvig, 2002), without momentum,
but with a variable learning rate that shrinks by a multiplicative constant
after each epoch, from 10−3 down to 10−6. Weights are initialized with
a uniform random distribution in [−0.05, 0.05]. Each neuron’s activation
function is a scaled hyperbolic tangent: y(a ) = Atanh Ba , where A = 1.7159
and B = 0.6666 (LeCun et al., 1998).

4 Deforming Images to Get More Training Instances

So far, the best results on MNIST were obtained by deforming training
images, thus greatly increasing their number. This allows for training net-
works with many weights, making them insensitive to in-class variability.
We combine affine (rotation, scaling, and horizontal shearing) and elastic
deformations, characterized by the following real-valued parameters:

� σ and α: For elastic distortions emulating uncontrolled oscillations of
hand muscles (for details, see Simard et al., 2003).

� β: a random angle from [−β,+β] describes either rotation or hori-
zontal shearing. In case of shearing, tan β defines the ratio between
horizontal displacement and image height.

� γx , γy: For horizontal and vertical scaling, randomly selected from
[1 − γ /100, 1 + γ /100].

At the beginning of every epoch, the entire MNIST training set gets
deformed. Initial experiments with small networks suggested the following
deformation parameters: σ = 5.0 − 6.0, α = 36.0 − 38.0, γ = 15 − 20. Since
digits 1 and 7 are similar, they get rotated or sheared less (β = 7.5◦) than
other digits (β = 15.0◦).
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Figure 1: The 35 misclassified digits of the best network from Table 1, together
with the two most likely predictions (bottom, from left to right) and the correct
label according to MNIST (top, right).

5 Results

All simulations were performed on a computer with a Core2 Quad 9450
2.66 GHz processor, 3 GB of RAM, and a GTX280 graphics card. The GPU
accelerates the deformation routine by a factor of 10 (only elastic deforma-
tions are GPU optimized); the forward propagation (FP) and BP routines
are sped up by a factor of 40. Implementation details can be found in the
appendix. We pick the trained MLP with the lowest validation error and
evaluate it on the MNIST test set. Results are summarized in Table 1.

Most remarkable, the best network has an error rate of only 0.35% (35
out of 10,000 digits). This is significantly better than the best previously
published results—0.39% by Ranzato et al. (2006) and 0.40% by Simard et al.
(2003), both obtained by more complex methods. The 35 misclassified digits
are shown in Figure 1. Many of them are ambiguous or uncharacteristic,
with obviously missing parts or strange strokes. Interestingly, the second
guess of the network is correct for 30 out of the 35 misclassified digits.

The best test error of this MLP is even lower (0.32%) and may be viewed
as the maximum capacity of the network. Performance clearly profits from
adding hidden layers and more units per layer. For example, network 5 has
more but smaller hidden layers than network 4 (see Table 1).

Networks with 12 million weights can successfully be trained by plain
gradient descent to achieve test errors below 1% after 20 to 30 epochs in
less than 2 hours of training. How can networks with so many parameters
generalize well on the unseen test set? The answer is that the continual
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deformations of the training set generate a virtually infinite supply of train-
ing examples, and the network rarely sees any training image twice.

6 Conclusion

In recent decades the amount of raw computing power per euro has grown
by a factor of 100 to 1000 per decade. Our results show that this ongoing
hardware progress may be more important than advances in algorithms and
software (although the future will belong to methods combining the best of
both worlds). Current graphics cards (GPUs) are already more than 40 times
faster than standard microprocessors when it comes to training big and deep
neural networks by the ancient algorithm, online backpropagation (weight
update rate up to 5 × 109/s and more than 1015 per trained network). On
the competitive MNIST handwriting benchmark, single-precision floating-
point GPU-based neural nets surpass all previously reported results, in-
cluding those obtained by much more complex methods involving special-
ized architectures, unsupervised pretraining, and combinations of machine
learning classifiers, for example. Training sets of sufficient size to avoid
overfitting are obtained by appropriately deforming images. Of course, the
approach is not limited to handwriting and obviously holds great promise
for many visual and other pattern recognition problems.

Appendix: GPU Implementation

A.1 Graphics Processing Unit. Until 2007 the only way to program a
GPU was to translate the problem-solving algorithm into a set of graphi-
cal operations. Despite being hard to code and difficult to debug, several
GPU-based neural network implementations were developed when GPUs
became faster than CPUs. Two-layer MLPs (Steinkraus, Buck, & Simard,
2005) and CNNs (Chellapilla, Puri, & Simard, 2006) have been previously
implemented on GPUs. Although speed-ups were relatively modest, these
studies showed how GPUs can be used for machine learning. More recent
GPU-based CNNs trained in batch mode are two orders of magnitude faster
than CPU-based CNNs (Scherer & Behnke, 2009).

The GPU code is written using CUDA (compute unified device archi-
tecture), a C-like general programming language. GPU speed and memory
bandwidth are vastly superior to those of CPUs and crucial for fast MLP
implementations. To fully understand our algorithm in terms of GPU and
CUDA, visit the NVIDIA Web site (NVIDIA, 2009). According to CUDA
terminology, the CPU is called host and the graphics card device or GPU.

A.2 Deformations. It takes 93 CPU seconds to deform the 60,000 MNIST
training images, most of them (87) for elastic distortions. Only the most time-
consuming part of the latter—convolution with a gaussian kernel (Simard
et al., 2003)—is ported to the GPU. The MNIST training set is split into 600
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a)

b)

c)

Figure 2: Forward propagation. (a) Mapping of kernel 1 grid onto the padded
weight matrix. (b) Mapping the kernel 2 grid onto the partial dot products
matrix. (c) Output of forward propagation.

sequentially processed batches. MNIST digits are scaled from the original
28 × 28 pixels to 29 × 29 pixels to get a proper center, which simplifies
convolution. An image grid has 290 × 290 cells, zero-padded to 300 × 300,
thus avoiding margin effects when applying a gaussian convolution kernel
of size 21 × 21. Our GPU program groups many threads into a block, where
they share the same gaussian kernel and parts of the random field. The
blocks contain 21 (the kernel size) ×10 threads, each computing a vertical
strip of the convolution operation (see algorithm 1).

Generating the elastic displacement field takes only 3 seconds. Deform-
ing the whole training set is more than 10 times faster, taking 9 instead of
the original 93 seconds. Further optimization would be possible by porting
all deformations onto the GPU and using the hardware’s interpolation ca-
pabilities to perform the final bilinear interpolation. We omitted this since
deformations are already fast (deforming all images of one epoch takes only
5% to 15% of total computation time, depending on MLP size).

A.3 Training Algorithm. We closely follow the standard BP algorithm
(Russell & Norvig, 2002), except that BP of deltas and weight updates are
disentangled and performed sequentially. This allows for more parallelism
within each routine.

A.3.1 Forward Propagation. The algorithm is divided into two kernels.
The weight matrix W is partitioned as illustrated in Figure 2.

Each block of kernel 1 has 256 threads (see Figure 2a), each computing a
partial dot product of 32 component vectors. The dot products are stored in
a temporary matrix (see Figure 2b). This kernel has a very high throughput:
average memory bandwidth is 115 GB/s. This is possible because many
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relatively small blocks keep the GPU busy. Each block uses shared memory
for storing the previous layer activations, which are simultaneously read
by the first 32 threads of each block and then used by all 256 threads. After
thread synchronization, the partial dot products are computed in parallel
(see algorithm 2). The number of instructions is kept to a minimum by
precomputing all common index parts.

The thread grid of kernel 2 (see Figure 2b) has only one row of blocks
consisting of war p threads, since each thread has to compute a complete
dot product (see Figure 2c) and then pipe it into the activation function.
This kernel (see algorithm 2) is inefficient for layers with fewer than 1024
incoming connections per neuron, especially for the last layer, which has
only 10 neurons—one for each digit. That is, its grid will have only one
block, occupying only 3% of the GTX280 GPU.

A.3.2 Backward Propagation. This is similar to FP, but we need WT for
coalesced access. Instead of transposing the matrix, the computations are
performed on patches of data read from device memory into shared mem-
ory, similar to the optimized matrix transposition algorithm of Ruetsch and
Micikevicius (2009). Shared memory access is much faster without coa-
lescing restrictions. Because we have to cope with layers of thousands of
neurons, backpropagating deltas uses a reduction method implemented
in two kernels communicating partial results via global memory (see
algorithm 3).

The bidimensional grid of kernel 1 is divided into blocks of war p (32)
threads. The kernel starts by reading a patch of 32 × 32 values from W.
The stride of the shared memory block is 33 (war p + 1), thus avoiding
all bank conflicts and significantly improving speed. Next, 32 input delta
values are read, and all memory locations that do not correspond to real
neurons (because of vertical striding) are zero-padded to avoid branching
in subsequent computations. The number of elements is fixed to war p size,
and the computing loop is unrolled for further speed-ups. Before finishing,
each thread writes its own partial dot product to global memory.

Kernel 2 completes BP of deltas by summing up partial deltas computed
by the previous kernel. It multiplies the final result by the derivative of the
activation function applied to the current neuron’s state and writes the new
delta to global memory.

A.3.3 Weight Updating. Algorithm 4 starts by reading the appropriate
delta and precomputes all repetitive expressions. Then the first 16 threads
read the states from global memory into shared memory. The “bias neu-
ron” with constant activation 1.0 is dealt with by conditional statements,
which could be avoided through expressions containing the conditions.
Once threads are synchronized, each single thread updates 16 weights in a
fixed unrolled loop.
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