
USOO7647629B2

(12) United States Patent (10) Patent No.: US 7,647,629 B2
Brumme et al. (45) Date of Patent: Jan. 12, 2010

(54) HOSTED CODE RUNTIME PROTECTION (52) U.S. Cl. .. 726/21
(58) Field of Classification Search 726/21

(75) Inventors: Christopher W. Brumme, Mercer See application file for complete search history.
Island, WA (US); Sebastian Lange,
Seattle, WA (US); Gregory D. Fee, (56) References Cited
Seattle, WA (US); Michael Gashler,
Kirkland, WA (US); Mahesh Prakriya, U.S. PATENT DOCUMENTS
Redmond, WA (US) 2002/0004815 A1 1/2002 Muhlestein et al. TO9,201

2002/0108102 A1* 8, 2002 Muhlestein et al. 717/124
(73) Assignee: Microsoft Corporation, Redmond, WA 2003/0041267 A1 2/2003 Fee et al.

(US) 2005/0172286 A1* 8, 2005 Brumme et al. T18, 1

k .

(*) Notice: Subject to any disclaimer, the term of this cited by examiner
patent is extended or adjusted under 35 Primary Examiner Kambiz Zand
U.S.C. 154(b) by 1268 days. Assistant Examiner Jason KGee

(74) Attorney, Agent, or Firm Lee & Hayes PLLC
(21) Appl. No.: 10/772,205

(57) ABSTRACT
(22) Filed: Feb. 3, 2004

A host operating in a managed environment intercepts a call
(65) Prior Publication Data from a managed caller to a particular callee and determines

US 2005/O172286 A1 Aug. 4, 2005 whether the call is permissible according to the host’s prior
configuration of a plurality of callees. The particular callee,

(51) Int. Cl. which provides access to a resource that the host can be
G06F 7/04 (2006.01) protecting, can have been previously configured by the host to
G06F 12/00 (2006.01) always allow the call to be made, to never allow the call to be
G06F 2/14 (2006.01) made, or to allow the call to be made based upon the degree to
G06F 3/00 (2006.01) which the host trusts the managed caller.
G06F 7/30 (2006.01)
GITC 700 (2006.01) 33 Claims, 7 Drawing Sheets

200 N

Computing Device 202
Applications

224 FILE 2.16(1)

CODE 218(1)
Compile To IL
& Metadata 226

TYPE 2201)

Managed
Code APPDOMAIN 214(1) APPDOMAIN 214(J)
Portion ASSY & D 2121) ASSY & D 212(1)

ASSY & D 212K) ASSY & D 212(L)

Virtual Machine (VM) 210

Shared Managed Library(ies) 208

ith JT Component 144

Operating System (OS) 146

Common Language Runtime (CLR) Loader

Native
Code
Portion

U.S. Patent Jan. 12, 2010 Sheet 1 of 7 US 7,647,629 B2

FRAMEWORK132
CoMMON LANGUAGE SPEc.140

AP142
SERVER(S) N COMMON LANG. RUNTIME 144

N OS/SERVICES 146

CLIENT 120(3)
124

CLIENT

120(1 (1) 126

E. 128

El-E O K
120(2) 120(M)

CLIENT

U.S. Patent Jan. 12, 2010 Sheet 2 of 7 US 7,647,629 B2

200 N

Computing Device 202

FILE 216(N)

E218(O)

2

Applications
224

Compile To IL
& Metadata 226

TYPE 220(P)

Managed
Code APP DOMAIN 2141 APP DOMAIN 214(J

Portion ASSY & D 212(1) ASSY & D 212(1)
y

ASSY & ID 212(K) ASSY & ID 212(L)

Virtual Machine (VM) 210

/ Shared Managed Library(ies) 208

Common Language Runtime (CLR) Loader (With JIT Component) 144

Native

Code Operating System (OS) 146
Portion

U.S. Patent Jan. 12, 2010 Sheet 3 of 7 US 7,647,629 B2

300- 22eve 5

HoST CONFIGURATION 302

RESOURCE CHECKING 30

ACTIVATE 306

ALWAYS 310
RESOURCE 312 (1)

RESOURCE 312 (A)

NEVER 314
RESOURCE 312 (1)

RESOURCE 312 (B)

CONDITIONAL 316
RESOURCE 312 (1)
PD 318 (1)

RESOURCE 312 (C)
PD 318 (C)

U.S. Patent Jan. 12, 2010 Sheet 4 of 7 US 7.647,629 B2

400 M
SHARED MANAGED LIBRARY 208

ASSEMBLY 412(d)

METHOD 402(1)

RESOURCE 312

HPCA 404

METHOD 402(E)

RESOURCE 31

HPCA 404

PD 31

U.S. Patent Jan. 12, 2010 Sheet 5 Of 7 US 7,647,629 B2

500 M
502

Host Loads CLR

Resource
Checking

504

NO
506 Subpartition

Shared Managed
Library(ies)

Execute Hosted
COce

NO 508

- 510

YES

Stop Resource 512
Checking if Active

U.S. Patent Jan. 12, 2010 Sheet 6 of 7 US 7,647,629 B2

600 \ e 602
606

At JIT Time: CLR Loads
Caller Assembly 212(d)
To Call Method 404(e)

For ACCess. To Resource 312

Resource 604
Checking
Specified

Insert
Conditional
Runtime
Stub

NO 608 HPCA
406 in Callee
Method 404

insert Never Runtime Stub

JIT Compile

614
Security Exception

618 616
Trust Exceeded

622 620

Caller's 624
5. Never Conditional-e-C ID 212 VS. PD 316 for

p allee Method 404

Adequate
Trust

US 7,647,629 B2
1.

HOSTED CODE RUNTIME PROTECTION

TECHNICAL FIELD

The present invention relates generally to a managed com
puting environment, and more particularly to an environment
where a computing device compiles managed code into
native code that is executed by a common language runtime
via the computing device's operating system, where the man
aged code environment disallows calls to managed code that
are deemed inappropriate for the particular the managed code
environment.

BACKGROUND

An application program interface (API) for a network plat
form can be used by developers to build Web applications and
services. One such API is the .NETTM platform created by
Microsoft Corporation of Redmond, Wash., USA. The
.NETTM platform is a software platform for Web services and
Web applications implemented in a distributed computing
environment. The .NETTM platform allows integration of a
wide range of services that can be tailored to the needs of the
user. As used herein, the phrase application program interface
or API includes traditional interfaces that employ method or
function calls, as well as remote calls (e.g., a proxy, stub
relationship) and SOAP/XML invocations. The .NETTM plat
form uses a framework that includes a Common Language
Runtime (CLR) and base class libraries. Additional informa
tion regarding the basics of the .NETTM Framework can be
found in a number of introductory texts, such as Pratt, Intro
ducing Microsoft .NET. Third Edition, Microsoft Press, 2003.
The CLR is the heart of the Microsoft .NETTM Framework

and provides the execution environment for all .NETTM code.
Thus, code that is built to make use of the CLR, and that runs
within the CLR, is referred to as “managed code.” In one
instance, managed code is code that is destined to run on a
virtual computing platform. The virtual computing platform
is a platform that just in time compiles the code at runtime
into the machine platforms assembly/machine code.
The CLR provides various functions and services required

for program execution, including just-in-time (JIT) compila
tion, allocating and managing memory, enforcing type safety,
exception handling, thread management and security. The
CLR is loaded upon the first invocation of a .NETTM routine.
Because managed code compiles to native code prior to
execution, significant performance increases can be realized
in Some scenarios. Managed code uses Code Access Security
(CAS) to prevent assemblies from performing certain opera
tions.

When writing managed code, the deployment unit is called
an assembly which is a collection of one or more files that are
versioned and deployed as a unit. An assembly is the primary
building block of a .NETTM Framework application. All man
aged types and resources are contained within an assembly
and are marked either as accessible only within the assembly
or as accessible from code in other assemblies.

An assembly can be packaged as a data link library (DLL)
or executable (EXE) file. While an executable file can run on
its own, a data link library file must be hosted in an existing
application. One type of assembly can be in a shared managed
library, where shared libraries are typically one specific DLL.
Each Such assembly in a shared managed library has one or
more methods that can be called by other assemblies. For

10

15

25

30

35

40

45

50

55

60

2
example, an assembly can call to a method in a managed
shared library, where the method is for a service that is acces
sible on the Internet.

Within any host, or program that is hosting other managed
code, access rights for calls between an assembly and a
method in a library’s assembly should be defined and limited
via rules to prevent code from doing something that is wrong
within an environment. For instance, certain code can use
synchronization in a way that can cause deadlocks or an
inconsistent state leading to decreased reliability and
throughput. It would therefore be advantageous to provide a
rule that prevents this code from synchronization to thereby
avoid the consequence of decreased reliability and through
put. Another situation where a rule is desirable is in the
prevention of a call from an assembly to a method that might
destabilize the hosting environment. In this case, the calling
assembly could be one that is provided by a developer entity
that is likely to be noncompliant with Sophisticated require
ments of the managed environment. As such, the calling
assembly might be managed code that, when executed, might
render the managed code environment unreliable, or might
destabilize a computing device running the hosting environ
ment. Still another situation where a rule, or hosting rule, is
desirable is to prevent an assembly from calling for access
rights to a resource that is inappropriate for an application that
is being hosted. For example, when a Database Management
System (DBMS) is being hosted in a virtual machine envi
ronment on a server, it would be inappropriate in a server
environment to permit a call from an assembly for a user
interface resource.
A managed environment can typically be accommodated

by different kinds of hosts, each of which may have different
hosting requirements to minimize threats to robustness and
reliability. It would be an advantage in the art to provide away
for a host to selectively disallow certain classes of resource
access to hosted code, where the hosting requirements would
not necessarily be based upon a security feature. While dif
ferent kinds of hosts can have different types of hosting
requirements, it would be problematic to provide a separate
method to perform the same function for each different kind
of host and/or for each different type of hosting requirement.
Accordingly, it would be an advance in the art to provide
techniques for a host to prevent a call to a certain method from
a certain caller to perform a certain function that could desta
bilize the hosting environment, while allowing the call to the
same method from a different and/or more highly trusted
caller, where the techniques could use the same method for
different types of call prevention and for different types of
hosts.

SUMMARY

Implementations allow a host of a runtime environment to
disallow a call to a method from a managed code caller when
the call is deemed inappropriate according to applicable rules
for the particular hosting environment. Implementations also
allow a host to minimize robustness and/or reliability failures
of hosted code by selectively disallowing access to resources
that could cause robustness and/or reliability issues in a spe
cific host environment. Moreover, shared library methods can
be selectively disabled by a host based on that host’s specific
reliability and/or robustness needs. As such, different hosts
may disallow different classes of resource access, such as
shared State or thread manipulation, based on the specific
hosts reliability and/or robustness criteria for the code that
the host is hosting.

US 7,647,629 B2
3

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the implementations
may be had by reference to the following detailed description
when taken in conjunction with the accompanying drawings
wherein:

FIG. 1 illustrates a network architecture in which clients
access Web services provided by one of more servers over the
Internet using conventional protocols, where each server runs
managed user code in a server process that can access an
object-oriented database.

FIG. 2 illustrates an exemplary embodiment of a comput
ing environment, one example of which can be as seen in FIG.
1, that integrates a virtual machine (VM) in a managed code
portion, where the computing environment has a managed
code portion that includes a shared managed library and an
exemplary software compilation of files having different file
types into one or more assemblies placed respectively within
one or more application domains for execution, and where the
computing environment has a native code portion that
includes a Common Language Run Time and an operating
system;

FIG.3 depicts an exemplary host configuration data struc
ture that includes a resource checking data structure that
defines hosting rules for conditionally permitting access to
methods from callers.

FIG. 4 depicts an exemplary implementation of a shared
managed library having a plurality of methods, where each
method has a resource identifier, and where one or more of the
methods also have a host protection security custom attribute
and security permission demand;

FIG. 5 depicts an implementation of an exemplary process
illustrated by a flowchart for subpartitioning a shared man
aged library based upon hosting rules for a managed environ
ment by use of a host configuration data structure.

FIG. 6 depicts an implementation of an exemplary process
illustrated by a flowchart for processing assemblies that call
methods in the subpartitioned shared managed library of FIG.
5, where calls are disallowed to methods from calling assem
blies or to methods that are deemed inappropriate for the
particular managed environment.

FIG. 7 is a block diagram of an exemplary environment
capable of supporting any exemplary computing device seen
in FIG. 1.
The same numbers are used throughout the disclosure and

figures to reference like components and features. Series 100
numbers refer to features originally found in FIG. 1, series
200 numbers refer to features originally found in FIG. 2,
series 300 numbers refer to features originally found in FIG.
3, and so on.

DETAILED DESCRIPTION

An assembly defines a security boundary. The Common
Language Runtime (CLR) implements a Code Access Secu
rity (CAS). What the CLR-based code in the assembly is
allowed to do depends on the intersection of what permissions
that assembly requests and what permissions are granted to
that assembly that are in effect when the assembly executes.
The CAS allows the CLR to limit what a particular assembly
is allowed to do based on an identity of the assembly. The
identity of the assembly can be the assembly’s name, who
published the assembly, and where the assembly came from.
Implementations use the identity of the assembly and the
appropriateness of the assembly’s calls as criteria to control
whether the assembly’s calls are permitted to be made.

10

15

25

30

35

40

45

50

55

60

65

4
Exemplary Network Environment
FIG. 1 shows a network environment 100 in which a net

work platform, such as the .NETTM platform, may be imple
mented. While the .NETTM platform is used herein for the
purpose of illustration of a managed environment, those of
skill in the relevant arts will readily recognize that implemen
tations disclosed herein are applicable to other managed envi
ronments, including a Java Virtual Machine environment.
The network environment 100 includes representative Web

services accessible directly by a software application, Such as
Web application 110. Each Web service is illustrated as
including one or more servers 134 that execute software to
handle requests for particular services. Such services often
maintain databases 114 that store information to be served
back to requesters. For instance, databases 114 can include an
object-oriented database. Web services may be configured to
perform any one of a variety of different services and can be
combined with each other and with other applications to build
intelligent interactive experiences.
The network environment 100 also includes representative

client devices 120(1), 120(2), 120(3),..., 120(M) that utilize
the Web application 110 (as represented by communication
links 122-128). The client devices, referenced generally as
number 120, can be implemented many different ways.
Examples of possible client implementations include, with
out limitation, portable computers, stationary computers, tab
let PCs, televisions/set-top boxes, wireless communication
devices Such as cellular telephones, personal digital assis
tants, video gaming consoles, printers, photocopiers, and
other Smart devices.
The Web application 110 is an application designed to run

on the network platform when handling and servicing
requests from clients 120. The Web application 110 is com
posed of one or more software applications 130 that run atop
a programming framework 132, which are executing on one
or more servers 134 or other computer systems. A portion of
Web application 110 may actually reside on one or more of
clients 120. Alternatively, Web application 110 may coordi
nate with other software on clients 120 to actually accomplish
its tasks.

The programming framework 132 is the structure that Sup
ports the applications and services developed by application
developers. It permits multi-language development and
seamless integration by Supporting multiple languages and
encapsulates the underlying operating system and object
model services. The framework 132 is a multi-tiered archi
tecture that includes an application program interface (API)
layer 142, a common language runtime (CLR) layer 144, and
an operating system/services layer 146. This layered archi
tecture allows updates and modifications to various layers
without impacting other portions of the framework 132. A
common language specification (CLS) 140 allows designers
of various languages to write code that is able to access
underlying library functionality.
The API layer 142 presents groups of functions that the

applications 130 can call to access the resources and services
provided by layer 146. The framework 132 can be configured
to Support API calls placed by remote applications executing
remotely from the servers 134 that host the framework 132.
An application residing on client 120 can use the API func
tions by making calls directly, or indirectly, to the API layer
142 over the network 104. The framework 132 may also be
implemented at the clients 120 identically to a server-based
framework 132, or modified for the purposes of the clients
120. Alternatively, the client-based framework may be con
densed in the event that the client 120 is a limited or dedicated

US 7,647,629 B2
5

function device, such as a cellular telephone 120(M), per
Sonal digital assistant, handheld computer, or other commu
nication/computing device.

Computing Device Environment
FIG. 2 shows an implementation that illustrates a comput

ing device 202 utilizing a virtual machine (VM) 210 having
architecture to run on different platforms. VM 210 is stacked
on an interface 222 between a managed code portion and a
native code portion. According, interface 222 can be an inter
face to different operating systems and different applications.
The native code portion includes operating system 146,

examples of which include a UNIX based operating system
such has a LINUXTM operating system, a SQL Server oper
ating systemTM provided by Sybase of Emeryville, Calif. or
by Microsoft Corporation, or the Window(R) operating system
provided by Microsoft Corporation. Over the operating sys
tem 146 is a module 144 that include a Common Language
Runtime (CLR) having a CLR loader and a Just-In-Time
(JIT) compiler component The managed code portion
includes VM 210, one or more files 216(n), and one or more
application (app) domains 214(j). Each file 216(n) has user
code 218(o) that can be coded in a variety of different pro
gramming languages. As mentioned above, additional infor
mation regarding the basics of the .NETTM Framework can be
found in a number of introductory texts, such as Pratt, Intro
ducing Microsoft .NET. Third Edition, Microsoft Press, 2003.

FIG. 2 illustrates an exemplary arrow 226 where files 216
having different file types 220p) are compiled into Interme
diate Language (IL) and metadata contained in one or more
managed assemblies (assy) 212 (1-K), (1-L) within respec
tive app domains 214(1-J). Each assy & ID 212, which has an
identification (ID), is placed into an app domain 212 before
being executed. The ID of the assy & ID 212 can be, for
instance, the assembly's name, who published the assembly,
and where the assembly came from. Accordingly, each of the
assemblies inapp domain 2140) are referred to herein as assy
& ID 212. The compilation 226 enables the files 216 of
arbitrary (and possibly expanded/extended) types 220 to be
compiled into at least one managed assy & ID 212 for place
ment within one app domain 214 for execution.
As illustrated, each file 216(n) is compiled and includes

code 218(o) of respective type 220(p). It should be under
stood that each file 216(n) may not physically include its code
218(o). However, the source code for each code 218(o) is
inferable or otherwise derivable from the contents of its file
216(n). Although a finite number of files 216 and types 220
are illustrated in and/or indicated by FIG. 2, any number of
files 216 and types 220 may be involved in compilation 226.
Compilation 226 may comprise a pluggable build architec
ture that interfaces with modules assigned to files 216. These
modules may be tailored to the corresponding arbitrary file
types 220 of files 216 in order to facilitate a compilation 226
of their code 218 into a target managed assy & ID 212 for
placement within an application domain 214 for execution.
The CLR loader of component 206, which is stacked upon

the computing device's operating system 146, operates in the
native code portion as the execution engine for the virtual
machine 210. The JIT aspect of component 206 compiles
each managed assy & ID 212 (1-K), (1-L) into native code for
placement within respective app domains 214(1-J) for execu
tion by the CLR loader of component 206. Accordingly, com
puting device 202 provides a virtual machine 210 operating in
a managed code portion for executing applications 224.

FIG. 3 illustrates an exemplary data structure 300. Data
structure 300 hold a host configuration data structure 302.
Host configuration data structure 302 can contain a variety of
data to configure a managed environment in which managed

10

15

25

30

35

40

45

50

55

60

65

6
code will be executed. These data include a variety of data
structure 304-320, with a resource checking data structure
308. Resource checking data structure 308 contains data to
configure hosting rules under which managed code will be
allowed or disallowed from making calls to method in one or
more managed shared libraries having functionality available
to the managed environment. Resource checking data struc
ture 308 is made available when the CLR 144 is started on the
computing device 202. The configuration of the hosting envi
ronment using data in the resource checking data structure
308 will continue until the CLR 144 has finished running on
the computing device 202. The configuration defines hosting
rules for conditionally permitting access to methods from
callers. The contents and arrangement of the resource check
ing data structure 308 are given for the purpose of an illus
tration of the functionality accomplished and not for the pur
pose of limiting the breadth of the contemplated functionality.
An activate data structure 306 contains data providing

information as to whether the host will use any information in
the resource checking data structure 30& Thus, the activate
data structure 306 enables or disables resource checking by
the host. An always data structure 310 identifies each resource
312(a) that will always be permissible to be accessed by a
managed assembly that calls a method providing access to the
resource 312(a). Thus, any managed assembly that calls a
method having access to the resource 312(a) will be permit
ted.

Another data structure 314 identifies each resource 312(b)
that will never be permissible to be accessed by a managed
assembly that calls a method providing access to the resource
312(b). Those resources 312(b) are subject to a hosting rule
that prevents an assembly from calling to a method having
access rights to any resource 312(b). Such access, for
instance, can be inappropriate for an application that is being
hosted. For example, when a Database Management System
(DBMS) is being hosted in a virtual machine environment on
a server, it would be inappropriate in a server environment to
permit a call from an assembly to a method that provides a
user interface resource. Any assembly that calls any method
having access to a resource 314(b) will cause a host protection
exception to result.
A conditional data structure 316 identifies each resource

312(c) that will conditionally be permissible to be accessed
by a managed assembly that calls a method providing access
to the resource 312(c). The condition upon which the call will
be permitted is the identity of the calling assembly. If a
managed assembly calls a method providing access to
resource 312(c), a Rule Demand (RD) 318(c) will be made
upon the calling assembly. If the identity of the calling assem
bly is trusted such that the RD 318(c) is satisfied, then the call
to the method having access to resource 312(c) will be per
mitted. Otherwise, a host protection exception will result.

FIG. 4 provided an exemplary amplification of shared
managed library 208 seen in FIG. 2. One or more managed
assemblies 412(1-D) are in shared managed library 208. Each
managed assembly 414(d) includes one or more methods
402(1-E). Each method 402(e) has at least one resource 312 to
which it provides access. Each method 402(e) may also have
a Host Protection Custom Attribute (HPCA) 404 and a Rule
Demand (RD) 318. The HPCA 404 represents the subparti
tioning of the method 402(e) into one of three categories:
always, never, and conditional. These three categories corre
spond, respectively, to data structures 310, 314, and 316 as
seen in FIG. 3. In this instance, the RD 318 contains data
quantifying the degree to which the calling assembly’s iden

US 7,647,629 B2
7

tity must be trusted in the managed code environment 202
before the call to method 404(e) to access resource 312 will be
permitted.
When the CLR is initiated within managed environment

200, the computing device 202 accesses the host configura
tion data structure 302. When the activate data structure 306
indicates that the host is to perform resource checking, then
the data in the resource checking data structure 308 is applied
to one or more shared managed libraries 208 in the managed
code portion of the computing environment 200. To apply
resource checking data structure 308 each resource 312 in
each of the always 310, never 314, and conditional 316 cat
egories is matched to a method 402(e) in an assembly 412(d)
of each shared managed library 208. A match is found when
method 404(e) provides access to a resource 312 that corre
sponds to a resource 312 within one of the always 310, never
314, and conditional 316 categories. With each match of
resource 312 in host configuration data structure 302 to
resource 312 in shared managed library 208, the HPCA 404
and the RD 318, where applicable, are also associated with
the corresponding method 402(e) of the assembly 412(d) of
the shared managed library 208. With the completion of the
matching and the association of the HPCA 303 and the RD
318, each shared managed library 208 is deemed to have been
subpartitioned for hosting rules as further discussed with
respect to FIG. 5, and each method 402(e) in each shared
managed library 208 is annotated for these hosting rules.
These hosting rules will be enforced in the managed environ
ment 200 as long as the CLR is running in the managed
environment. As such, any calls from a managed assy & ID
212 to a method 402(e) will subject to these hosting rules.

FIG. 5 depicts an exemplary process 500 for applying
hosting rules to methods in a shared managed library in a
managed environment. Process 500 has a block 502 at which
a host of the managed environment load a CLR. At block 502,
a query is made as to whether the managed environment
should enable resource checks to be made on calls made to
methods having access to resources. If not, then process 500
moves to block 508. Otherwise, process 500 passes control to
block 506 at which one more shared managed libraries are
Subpartitioned according to hosting rules. The hosting rules
can be found by the host in one or more host configuration
data structures 302. The host configuration data structures
302, when applied to configure the managed environment,
enable the managed environment to perform conditional
resource checks when calls are made to methods 402(1-E)
providing access to respective resources 312.

At block 508, hosted code is executed in the managed
environment. Features of the execution of the hosted code
include calls from assemblies to methods providing access to
resources. When resource checking has been enabled at block
504, each call to a method is subject to the enforcement of
hosting rules applied at block 506. A query 510 determines
whether the CLR is terminating. If not, process 510 loops
between blocks 508 and 510. Otherwise, process 500 termi
nates at block 512 at which resource checking, if enabled at
block 504, also terminates.

FIG. 6 is a flowchart of an exemplary process 600 for
applying conditional rules to calls made by managed code in
managed environment 200 seen in FIG. 2. As such, off page
connector 508 of FIG. 6 represents block 508 in FIG.5 for the
execution of hosted code in the managed environment 200.
While process 600 provides an exemplary implementation for
allowing a host of a runtime environment to be configured to
use hosting rules to disallow calls to methods from untrusted
callers or to methods that are deemed inappropriate for the
particular runtime environment, other implementations

10

15

25

30

35

40

45

50

55

60

65

8
accomplishing similar functionality but varying order and
application of similar concepts are also contemplated.

Process 600 moves control to block 604 which represents
the point of Just In Time (JIT) compilation of a managed assy
& ID 212. This point marks where the JIT aspect of compo
nent 206 compiles a calling managed assy & ID 212 into
native code to be executed by the CLR loader of component
206. At JIT time, the CLR loads the caller (e.g., calling) assy
& ID 212 that is to make a call to a method 404(e) that
provides access to a resource 312. A query 606 determines if
resource checking was enabled, as described above at block
504 of FIG. 5. If not, then process 600 passes control to block
614. If resource checking had been enabled, then process 600
passes control to a query 608. Query 608 determines if an
HPCA 406 has been associated with the method 404(e) in an
assembly 412(d) of shared managed library 208 that is being
called by assy & ID 212. If not, then process 600 passes
control to block 614. If so, then query 610 determines if the
HPCA406 represents that the call is neverallowed. If so, then
a runtime stub is generated for association with all or part of
the corresponding JIT compiled assy & ID 212, where the
runtime stub represents that the call is never allowed to be
made for access to a corresponding resource 312 via method
404(e).

If query 610 finds that the HPCA 406 does not represent
that the call is never allowed, then by default the HPCA406
represents that the call is only conditionally allowed and
process 600 passes control to block 616. At block 616, a
runtime stub is generated for association with all or part of the
corresponding JIT compiled assy & ID 212, where the runt
ime stub represents that the call is conditionally allowed to be
made based upon the ID of the assy & ID 212. Process 600
then passes control to block 614.
At block 614, all or part of assy & ID 212 is JIT compiled

into native code. The native code is associated with any runt
ime stub that was generated at block 612 or block 616. Pro
cess 600 then proceeds until the runtime for the native code
has arrived, as indicated by block 618. At runtime, a query
620 determines if one of the runtime stubs had been associ
ated with the native code. If not, the native code will executed
at block 626 where a call can be made to the corresponding
method 404(e) to provide access to a respective resource 312.
If a runtime stub is found by query 620 that represents the
condition that the call should never be permitted, the process
600 will output or throw a host protection exception at termi
nal block 622. Other conventional processes, not described
here, can precede and/or follow the throwing of a host pro
tection exception with respect to a managed environment.

If a runtime stub is found by query 620 that represents the
condition that the call might be permitted, then a query 624
determines whether the ID of the calling assy & ID 212 is
sufficient to satisfied the RD 316 associated with the corre
sponding method 404(e). If the ID is not sufficient, the man
aged calling assy & ID 212 is not sufficiently trusted to be
permitted to make its requested call to method 404(e) for
access to resource 312, and process 600 will output or throw
a host protection exception at terminal block 616. Otherwise,
the managed calling assy & ID 212 will be deemed to have
sufficient trust to call method 404(e). The corresponding JIT
compiled native code will executed at block 626 where a call
can be made to the corresponding method 404(e) to provide
access to a respective resource 312. Following the execution
of the native code in the native code portion of managed
environment 202, process 600 passes control back to block
604, as represented by the on-page connector, and processing
continues on a described above.

US 7,647,629 B2
9

Conclusion.

In hosting environments with strict reliability, robustness
and programming model requirements, it may not be permis
sible for hosted user code to be able to call everything in one
or more shared managed libraries. Specifically, accessing
methods or classes that otherwise have no security demand
placed on them may turn out to violate reliability, robustness
or programming model restrictions particular to the hosting
environment. For instance, access to an API under some con
ditions may cause the process to be torn down but may be
benign in other hosting scenarios that involve process recy
cling. Implementations disclosed herein provide features that
allows hosts to Subset the shared managed libraries and dis
allow access to any APIs that could violate specific reliability
or robustness requirements the host may have. Once Such
disallowed access may be, for instance, that certain hosted
code is not allowed shared State or process creation and/or
management.

Implementations allow a host to select a set of reliability
and/or robustness constraints in the hosting API that should
be protected against. This list of criteria can address the
robustness and reliability needs of different hosting sce
narios. For every reliability and/or robustness criteria that a
host has chosen, the host can select whether no code whatso
ever should be able to access the APIs falling into the chosen
reliability and/or robustness categories, or whether at least
fully trusted code (e.g., core library code or host system code)
should be able to access those APIs. All APIs falling into any
of the reliability and/or robustness categories that a host may
wish to restrict can be marked with a Rule Demand, such as
is seen by RD 314 in FIGS. 3-4. These Rule Demands will be
ignored for any reliability and/or robustness category that has
not been selected by a host and will not impact the perfor
mance of accessing APIs so annotated.

From a perspective of a common language runtime security
model, access from one assembly to another via publicly
available APIs is not a security concern so longas code access
security permissions are met. Simple cross assembly access
when taking place within the same application domain is not
normally a protected operation. In a different hosting envi
ronment, however, a simple access from one server object
(such as an assembly) to another (such as another assembly)
might need to be regulated by the hosting environments
specific user identity based permission system, which is not
offered by the common language runtime security model.
Accordingly, implementations provide ways to intercept
cross assembly calls from which a determination can be made
as to whether the cross assembly access (e.g., cross server
object access) is permissible given the hosting environments
user identity based security settings.
A Computer System
FIG. 7 shows an exemplary computer system that can be

used to implement the processes described herein. Computer
742 includes one or more processors or processing units 744,
a system memory 746, and a bus 748 that couples various
system components including the system memory 746 to
processors 744. The bus 748 represents one or more of any of
several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of bus
architectures. The system memory 746 includes read only
memory (ROM) 750 and random access memory (RAM)
752. A basic input/output system (BIOS) 754, containing the
basic routines that help to transfer information between ele
ments within computer 742. Such as during start-up, is stored
in ROM 7SO.

10

15

25

30

35

40

45

50

55

60

65

10
Computer 742 further includes a hard disk drive 756 for

reading from and writing to a hard disk (not shown), a mag
netic disk drive 758 for reading from and writing to a remov
able magnetic disk 760, and an optical disk drive 762 for
reading from or writing to a removable optical disk 764 such
as a CD ROM or other optical media. The hard disk drive 756,
magnetic disk drive 758, and optical disk drive 762 are con
nected to the bus 748 by an SCSI interface 766 or some other
appropriate interface. The drives and their associated com
puter-readable media provide nonvolatile storage of com
puter-readable instructions, data structures, program modules
and other data for computer 742. Although the exemplary
environment described herein employs a hard disk, a remov
able magnetic disk 760 and a removable optical disk 764, it
should be appreciated by those skilled in the art that other
types of computer-readable media which can store data that is
accessible by a computer. Such as magnetic cassettes, flash
memory cards, digital video disks, random access memories
(RAMs), read only memories (ROMs), and the like, may also
be used in the exemplary operating environment.
A number of program modules may be stored on the hard

disk 756, magnetic disk 760, optical disk 764, ROM 750, or
RAM 752, including an operating system 770, one or more
application programs 772, cache?other modules 774, and pro
gram data 776. A user may enter commands and information
into computer 742 through input devices such as a keyboard
778 and a pointing device 780. Other input devices (not
shown) may include a microphone, joystick, game pad, sat
ellite dish, scanner, or the like. These and other input devices
are connected to the processing unit 744 through an interface
782 that is coupled to the bus 748. A monitor 784 or other type
of display device is also connected to the bus 748 via an
interface, such as a video adapter 786. In addition to the
monitor, personal computers typically include other periph
eral output devices (not shown) Such as speakers and printers.
Computer 742, which can be a server or a personal com

puter, commonly operates in a networked environment using
logical connections to one or more remote computers, such as
a remote computer 788. The remote computer 788 may be
another server or personal computer, a router, a network PC,
a peer device or other common network node, and typically
includes many or all of the elements described above relative
to computer 742. The logical connections depicted in FIG. 7
include a local area network (LAN) 790 and a wide area
network (WAN) 792. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets, and the Internet.
When used in a LAN networking environment, computer

742 is connected to the local network through a network
interface or adapter 794. When used in a WAN networking
environment, computer 742 typically includes a modem 796
or other means for establishing communications over the
wide area network 792, such as the Internet. The modem 796,
which may be internal or external, is connected to the bus 748
via a serial port interface 768. In a networked environment,
program modules depicted relative to the personal computer
742, or portions thereof, may be stored in the remote memory
storage device. It will be appreciated that the network con
nections shown are exemplary and other means of establish
ing a communications link between the computers may be
used.

Generally, the data processors of computer 742 are pro
grammed by means of instructions stored at different times in
the various computer-readable storage media of the com
puter. Programs and operating systems are typically distrib
uted, for example, on floppy disks or CDROMs. From there,
they are installed or loaded into the secondary memory of a

US 7,647,629 B2
11

computer. At execution, they are loaded at least partially into
the computer's primary electronic memory. The invention
described herein includes these and other various types of
computer-readable storage media when Such media contain
instructions or programs for implementing the blocks
described below in conjunction with a microprocessor or
other data processor. The invention also includes the com
puter itself when programmed according to the methods and
techniques described herein.

For purposes of illustration, programs and other executable
program components such as the operating system are illus
trated herein as discrete blocks, although it is recognized that
Such programs and components reside at various times in
different storage components of the computer, and are
executed by the data processor(s) of the computer.

Various modules and techniques may be described herein
in the general context of computer-executable instructions,
Such as program modules, executed by one or more comput
ers or other devices. Generally, program modules include
routines, programs, objects, components, data structures, etc.
that perform particular tasks or implement particular abstract
data types. Typically, the functionality of the program mod
ules may be combined or distributed as desired in various
embodiments.
An implementation of these modules and techniques may

be stored on or transmitted across some form of computer
readable media. Computer readable media can be any avail
able media that can be accessed by a computer. By way of
example, and not limitation, computer readable media may
comprise "computer storage media' and “communications
media.”
"Computer storage media” includes volatile and non-vola

tile, removable and non-removable media implemented in
any method or technology for storage of information Such as
computer readable instructions, data structures, program
modules, or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to store the desired
information and which can be accessed by a computer.

“Communication media typically embodies computer
readable instructions, data structures, program modules, or
other data in a modulated data signal. Such as carrier wave or
other transport mechanism. Communication media also
includes any information delivery media. The term “modu
lated data signal” means a signal that has one or more of its
characteristics set or changed in Such a manner as to encode
information in the signal. By way of example, and not limi
tation, communication media includes wired media Such as a
wired network or direct-wired connection, and wireless
media Such as acoustic, RF, infrared, and other wireless
media. Combinations of any of the above are also included
within the scope of computer readable media.

The present invention may be embodied in other specific
forms without departing from its spirit or essential character
istics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.
What is claimed is:
1. In a host of a virtual machine environment having one or

more methods in a shared managed library, a process for
managing calls from a first managed code caller to a first

5

10

15

25

30

35

40

45

50

55

60

65

12
method, the process managing calls based on a hosting rule
selected from the following hosting rules each stored in a data
Structure:

authorizing, by a computing device, calls from one of a
plurality of managed code callers to the first method;

preventing, by the computing device, calls from one of a
plurality of managed code callers to the first method due
to the first methods inappropriateness for the virtual
machine environment, the first methods inappropriate
ness being indicated by a query that determines whether
a host protection custom attribute (HPCA) is associated
with the first method, the query determining from the
HPCA that the calls from one of the plurality of managed
code callers are to be prevented when the HPCA is
associated with the first method; and

conditionally authorizing, by the computing device, calls
from one of a plurality of managed code callers to the
first method based on the first methods required level of
trust, a level of trust attributed to the first managed code
caller, and a rule demand that contains data quantifying
a degree of the level of trust, the level of trust attributed
to the first managed code caller corresponding to an
identity of a provider of the first managed code caller.

2. The process as defined in claim 1, wherein the authoriz
ing and the preventing a call further comprises:

compiling code corresponding to the first managed code
caller into native code; and

executing the native code corresponding to the first man
aged code caller while the first managed code caller is
making the call to the first method native code.

3. The process as defined in claim 2, further comprising
throwing an exception during the executing and while the first
managed code caller is making the call to the first method
native code when:

the call is prevented; or
the level of trust attributed to the first managed code caller

is insufficient when compared to a security permission
demand assigned to and required by the first method.

4. The process as defined in claim 1, wherein when the call
from the first managed code caller is authorized, access is
provided by the first method to a protected resource.

5. The process as defined in claim 1, wherein any autho
rized call provides one or more of the plurality of managed
code callers with access to one or more protected resources
corresponding to the called method.

6. The process as defined in claim 1, wherein the host
compiles the first managed code caller into native code that is
executed by a common language runtime via an operating
system of the host.

7. The process as defined in claim 1, further comprising
configuring each method in the shared managed library with
one hosting rule.

8. The process as defined in claim 7, wherein each method
is configured prior to any call to any method from any one of
the plurality of managed code callers.

9. The process as defined in claim 1, further comprising:
determining whether the host will use any hosting rule in

authorizing a call from any one of the plurality of man
aged code callers to any of the one or more methods; and

configuring the one or more methods in the shared man
aged library with one hosting rule when the determina
tion is affirmative, and not configuring the one or more
methods in the shared managed library with one hosting
rule when the determination is negative.

10. The process as defined in claim 9, wherein:
each method in the shared managed library provides access

to one or more protected resources; and

US 7,647,629 B2
13

the host has access to a host configuration data structure
comprising:
resource checking data for making the determination;
configuration data referencing the one or more protected

resources and specifying:
each protected resource to which access will be autho

rized to any one of the plurality of managed code
callers;

each protected resource to which access will be pre
vented to any one of the of managed code callers;
and

each protected resource to which access will be autho
rized to any one of the plurality of managed code
callers having a recognized level of trust satisfying
a security permission demand corresponding to the
protected resource;

wherein the process further comprises:
accessing the host configuration data structure; and
using the resource checking data in the host configura

tion data structure to make the determination, wherein
the configuring of the one or more methods in the
shared managed library with one hosting rule com
prises, for each method:
matching each protected resource to which the

method provides access to the corresponding pro
tected resource in the host configuration data struc
ture; and

for each match, assigning to the method the corre
sponding configuration data that is associated with
the protected resource in the host configuration
data structure.

11. The process as defined in claim 1, wherein the manag
ing calls comprises either authorizing or preventing a call
from a first managed code caller to a first method based at
least in part on the first method.

12. A computer readable storage medium having machine
readable instructions stored thereon that, when executed by
one or more processors, causes the one or more processors to
implement the process as defined in claim 1.

13. A method, comprising:
intercepting, with a computing device having a host oper

ating in a managed environment, a call from a managed
caller to a managed callee; and

deriving, by the computing device, whether the call is
permissible according to the host’s prior configuration
of a plurality of managed callees, wherein:
each managed callee provides access to a protected

resource; and
the prior configuration specifies whether to:
authorize the call to be made;
prevent the call to be made, the preventing being indi

cated by a query that determines whether a host pro
tection custom attribute (HPCA) is associated with a
method, the query determining from the HPCA that
the calls from the managed code caller is to be pre
vented when the HPCA is associated with the method;
O

conditionally authorize the call to be made based upon
the degree to which the host trusts the managed caller,
the degree to which the host trusts the managed caller
corresponding to an identity of a provider of the man
aged caller and a rule demand that contains data quan
tifying the degree to which the host trusts the managed
caller,

providing access, by the computing device, to the protected
resource to the managed caller when the call is permis
sible; and

5

10

15

25

30

35

40

45

50

55

60

65

14
preventing access, by the computing device, to the pro

tected resource to the managed caller when the call is not
permissible.

14. The method as defined in claim 13, wherein the host
compiles the managed caller into native code that is executed
by a common language runtime via an operating system of the
host.

15. The method as defined in claim 14, further comprising
throwing an exception when:

the managed caller attempts to make a call that is pre
vented; or

the managed caller attempts to make a call when the degree
to which the host trusts the managed caller is insuffi
cient.

16. The method as defined in claim 13, further comprising,
prior to the intercepting:

determining whether the host will perform the deriving:
performing the intercepting and the deriving if the deter

mination is affirmative; and
preventing the intercepting and the deriving if the determi

nation is negative.
17. The method as defined in claim 16, wherein:
the host has access to a host configuration data structure

comprising:
resource checking data for making the determination;
and

configuration data Sufficient for the host’s prior configu
ration of the plurality of managed callees;

the determining whether the host will make the derivation
comprises accessing, with the host, the resource check
ing data in the host configuration data structure.

18. A computer readable storage medium having machine
readable instructions stored thereon that, when executed by
one or more processors, causes the one or more processors to
implement the method as defined in claim 13.

19. An apparatus, comprising:
virtual machine means, in a managed code portion includ

ing a plurality of methods in a shared managed library,
for operating a plurality of managed code callers in the
managed code portion;

execution engine means, in a native code portion, for the
virtual machine means;

means, in a native code portion, for providing a runtime
engine in an operating System; and

means for authorizing or preventing a call from a first one
of the plurality of managed code callers to a first one of
the plurality of methods based upon a configuration of
the first method with a hosting rule selected from a group
comprising of:
authorizing calls from any one of the plurality of man

aged code callers to the first method;
preventing calls from any one of the plurality of man

aged code callers to the first method due to the first
methods inappropriateness for the runtime environ
ment, the first methods inappropriateness being indi
cated by a query that determines whether a host pro
tection custom attribute (HPCA) is associated with
the first method, the query determining from the
HPCA that the calls from any one of the plurality of
managed code callers are to be prevented when the
HPCA is associated with the first method; and

conditionally authorizing calls from any one of the plu
rality of managed code callers to the first method
based upon:
a methods required level of trust; and
a level of trust attributed to the managed code caller,

the level of trust attributed to the managed code

US 7,647,629 B2
15

caller being based upon an identification of the
provider of the managed code caller and a rule
demand that contains data quantifying a degree of
the level of trust.

20. The apparatus as defined in claim 19, further compris- 5
ing:

means for compiling each one of the plurality of managed
code callers from an intermediate language code and
metadata into native code;

means for loading the native code with a Common Lan- 10
guage Runtime (CLR) loader in the native code portion
to load the compiled native code; and

means for executing the compiled native code in the native
code portion causing the managed code caller to call one
method. 15

21. The apparatus as defined in claim 19, further compris
ing means for throwing an exception when one of the plurality
of managed code callers attempts to make a prevented call
during the execution of the compiled native code correspond
ing to any one of the plurality of managed code callers. 2O

22. The apparatus as defined in claim 19, wherein the
managed code portion further comprises one or more files
associated with user code that, when compiled into an inter
mediate language code and metadata generated by a language
compiler, are represented by one or more of the plurality of 25
managed code callers.

23. The apparatus as defined in claim 19, wherein the
execution engine means in the native code portion further
comprises a compiler to compile each one of the plurality of
managed code callers into native code for execution by the 30
native code portion.

24. The apparatus as defined in claim 19, wherein the
execution engine means in the native code portion further
comprises:

a Just In Time (JIT) compiler to compile each one of the 35
plurality of managed code callers into native code; and

a CLR loader to load the compiled native code for execu
tion by the native code portion.

25. A computing device, comprising:
a managed code portion including: 40

one or more methods in a shared managed library;
one or more assemblies placed in respective application

domains for execution; and
a virtual machine;

a native code portion including: 45
an execution engine for the virtual machine; and
an operating system under the execution engine;

logic configured to:
intercept a call from one assembly to one method;
derive whether the call is permissible according to a 50

prior configuration of the one of more methods,
wherein:
each method provides access to a protected resource:

and
the prior configuration specifies whether to: 55

authorize the call to be made;
prevent the call to be made, the preventing being

indicated by a query that determines whether a
host protection custom attribute (HPCA) is asso
ciated with the one or more methods, the query 60
determining from the HPCA that the call is to be
prevented when the HPCA is associated with the
one or more methods;

conditionally authorize the call to be made based
upon the degree to which the one assembly is 65
trusted by the computing device, the degree to
which the computing device trusts the one

16
assembly corresponds to an identity of a pro
vider of the one assembly and a rule demand that
contains data quantifying the degree to which the
one assembly is trusted by the computing device;

provide to the one assembly access to the corresponding
protected resource when the call is permissible; and

prevent access to the one assembly to the corresponding
protected resource when the call is not permissible.

26. The computing device as defined in claim 25, wherein
the computing device compiles the one assembly into native
code that is executed by a common language runtime via the
operating system.

27. The computing device as defined in claim 26, further
comprising throwing an exception when:

the prior configuration specifies to attempt to make the call
that is prevented; or

the prior configuration specifies to attempt to make the call
when the degree to which the computing device trusts
the one assembly is insufficient.

28. The computing device as defined in claim 25, further
comprising, prior to the intercepting:

determining whether the computing device will make the
derivation; performing the intercepting and the deriving
if the determination is affirmative; and

not performing the intercepting and the deriving if the
determination is negative.

29. The computing device as defined in claim 28, wherein:
the computing device has access to a host configuration

data structure comprising:
resource checking data for making the determination;
and

configuration data sufficient for the computing device's
prior configuration of the one of more methods:

the determining whether the computing device will make
the derivation comprises accessing, with the computing
device, the resource checking data in the host configu
ration data structure.

30. The computing device as defined in claim 25, wherein
the logic is further to receive intermediate language code and
metadata generated by a language compiler to form the one or
more assemblies for placement within respective application
domains for execution.

31. The computing device as defined in claim 30, wherein
the intermediate language code and the metadata generated
by the language compiler are generated from one or more files
each having a file type and each being associated with user
code.

32. The computing device as defined in claim 25, wherein
the execution engine further comprises:

a JIT complier to compile the assemblies into native code:
and

a CLR loader to load the compiled native code for execu
tion in the native code portion.

33. A host operating in a managed environment, compris
ing:

logic, of a computing device, for configuring each of a
plurality of managed callees, each providing access to a
protected resource, with a configuration that:
authorizes a call to be made to each of the plurality of
managed callees for access to the corresponding pro
tected resource:

prevents a call to be made to each of the plurality of
managed callees for access to the corresponding pro
tected resource, the preventing being indicated by a
query that determines whether a host protection cus
tom attribute (HPCA) is associated with one or more
methods, the query determining from the HPCA that

US 7,647,629 B2
17 18

the call is to be prevented when the HPCA is associ- logic, of the computing device, after intercepting the call,
ated with the one or more methods; or for determining whether the call is permissible accord

conditionally authorizes a call to be made to each of the ing to the configuration of the particular one of the
plurality of managed callees for access to the corre- plurality of managed callees; and
sponding protected resource based upon a degree of 5
trust of the host for one of a plurality of managed
callers and a rule demand that contains data quantify
ing the degree of trust of the one of the plurality of
managed callers, the degree of trust of the host for the
one of the plurality of managed callers corresponding 10
to an identity of a provider to the host;

logic, of the computing device, for intercepting a call from is not permissible.
a particular one of the plurality of managed callers to a
particular one of the plurality of managed callees; k

logic, of the computing device, after determining whether
the call is permissible, for either providing access to the
particular one of the plurality of managed callers to the
protected resource when the call is permissible or pre
venting access to the particular one of the plurality of
managed callers to the protected resource when the call

