
USOO7743423B2

(12) United States Patent (10) Patent No.: US 7,743,423 B2
Lange et al. (45) Date of Patent: Jun. 22, 2010

(54) SECURITY REQUIREMENT 5.978.484 A * 1 1/1999 Apperson et al. 705/54
DETERMINATION 6,012,100 A * 1/2000 Frailong et al. 709/250

6,044,466 A 3/2000 Anand et al. T26.1
(75) Inventors: Sebastian Lange, Seattle, WA (US); 6,044,467 A 3, 2000 Gong - - - - - - - - - - - - - - - ... 726/4

Gregory D. Fee, Seattle, WA (US); 6,138,238 A 10/2000 Scheifler et al. 726/17
6,473,800 B1 * 10/2002 Jerger et al. 709,226

Aaron Goldfeder, Seattle, WA (US); 6.490.679 B1* 12, 2002 T I - W umblin et al. 713,155

lyan Medvedey, Bellevue, WA (US); 6,735,758 B1* 5/2004 Berry et al. 717,130
Michael Gashler, Kirkland, WA (US) 7,076,557 B1 * 7/2006 LaMacchia et al. 709,229

7,076,804 B2 * 7/2006 Kershenbaum et al. T26.30
(73) Assignee: Microsoft Corporation, Redmond, WA 7,207,064 B2 4/2007 Fee et al.

(US) 2002/00 19941 A1 2/2002 Chan et al. T13,185

(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 1215 days.

Larry Koved, Aaron Kershenbaum, Marco Pistoia, Access right
(21) Appl. No.: 10/772.207 Analysis for Java, Oct. 31, 2001, IBM Research Report, RC22224.*

(22) Filed: Feb. 3, 2004 (Continued)
Primary Examiner William R Korzuch

(65) Prior Publication Data Assistant Examiner Trang Doan
US 2005/O1721.26A1 Aug. 4, 2005 (74) Attorney, Agent, or Firm Lee & Hayes, PLLC

(51) Int. Cl. (57) ABSTRACT
H04N 7/6 2006.O1
G06F 7700 30: 8: All execution paths of one or more assemblies in managed
GO6F II/30 (2006.015 code are simulated to find the permissions for each execution
GO6F 9/44 (2006.015 path. The managed code can correspond to a managed shared

library or a managed application. Each call in each execution
path has a corresponding permissions set. When the library or
application has permissions to execute that are not less than
the required permission sets for the execution paths, any
dynamic execution of the library or application will not trig
ger a security exception The simulated execution provides a
tool that can be used to ensure that code being written will not
exceed a maximum security permission for the code. A per

(52) U.S. Cl. 726/26: 726/1: 726/30;
717/126,717/131; 717/135; 717/100; 717/101;
717/124; 717/125; 717/127; 717/128; 717/129;

713/193

(58) Field of Classification Search 717/100,
717/101, 124-129, 131, 135; 726/1, 26

See application file for complete search history.
(56) References Cited mission set can be determined by the tool for each assembly

corresponding to an application and for each entry point
U.S. PATENT DOCUMENTS corresponding to a shared library.

5,915,085 A * 6/1999 Koved T26.1
5,958,050 A * 9/1999 Griffin et al. T26, 1 41 Claims, 6 Drawing Sheets

SIMULATED STACK
504 ? WALK 500

- Execution Path

506 TN Assembly/Method
Entry Point

508 N Gather Permissions
Not Yet Gathered YES

YES

514

Estimate Security requests
Made Against All Assemblies

NO-> With respect To the
Execution Path Using
Gathered Permissions

Execution
Paths?

US 7,743.423 B2
Page 2

U.S. PATENT DOCUMENTS

2002/01742.24 A1* 11/2002 Scheifler et al. 709,225
2003/0041267 A1 2/2003 Fee et al.
2003/0225698 A1* 12/2003 Stefket al. 705/51
2004/004.0017 A1 2/2004 Kershenbaum et al. 717,158
2004/0216150 A1* 10, 2004 Scheifler et al. T19,330
2004/0237067 A1* 11/2004 Sun et al. 717/110

OTHER PUBLICATIONS

Larry Koved, Aaron Kershenbaum, Marco Pistoia, Access Rights
Analysis for Java, Oct. 31, 2001, IBM Research Report, RC22224.*

Larry Koved, Aaron Kershenbaum, Marco Pistoia, Access Rights
Analysis for Java, Oct. 31, 2001, IBM Research Report, RC22224.*
Larry Koved, Aaron Kershenbaum, Marco Pistoia, Access Rights
Analysis for Java, Oct. 31, 2001, IBM Research Report, RC22224,
pp. 1-14.*
David Wong and Rohyt Belani, Secure Programming with .Net, Nov.
26, 2002, http://www.securityfocus.com/infocus? 1645, pp. 1-5.*

* cited by examiner

U.S. Patent Jun. 22, 2010 Sheet 1 of 6 US 7,743.423 B2

Computing Device 102
Applications

124

Compile To IL
& Metadata 126

Managed
Code APPDOMAIN 114(1) APPDOMAIN 114(J)
Portion ASSEMBLY 1 121) ASSEMBLY 1 12(1)

ASSEMBLY 1 12(K) ASSEMBLY 1 12(L)

Virtual Machine (VM) 110

/ Shared Managed Library 108

Common Language Runtime (CLR) Loader/JIT Component 106
Native

Code Operating System (OS) 104
Portion

U.S. Patent Jun. 22, 2010 Sheet 2 of 6 US 7,743.423 B2

FILE . . . Compile To IL
Applications 124 & Metadata 126

APPDOMAIN 114(1) APPDOMAIN 114(J)

ASSEMBLY 1 12(1) ASSEMBLY 1 12(1)

METHOD METHOD
202(1) 202(1)

ASSEMBLY 1 12(K) ASSEMBLY 1 12(L)

Shared Managed Library 108

ASSEMBLY ASSEMBLY
204 METHOD 204) METHOD METHOD 24 METHOD

206(1) 206(V) 206(1) 206(W)

Managed Code Portion 22eve 2

U.S. Patent Jun. 22, 2010 Sheet 3 of 6 US 7,743.423 B2

Possible Execution Paths of Assemblies 1-1

300

Estimated Security
Requirement Determination =

PUP2 U... UPo

22eve 5%
Method Entry Points 1-10 in A One (1) Shared Managed Library 108

(3)(3)(3)(3) (S) () (3) (3)(3)(3)
302

Estimated Security
Requirement Determination =

P U P U... U P

U.S. Patent Jun. 22, 2010 Sheet 4 of 6 US 7,743.423 B2

400 /

Estimated Security Requirement Determination=
Permission 406 (1) U Permission 406 (2) ... U ... U Permission 406 (Y)

Simulated Call Stack 402 For Application 124(a)
412

ASSEMBLY 1 12(k-Z),
APP-METHOD 202(g) PERMISSION406(1) GRANTS 404(1)

ASSEMBLY 1.12(k),
APP-METHOD 202(r) GRANTS 404(x) PERMISSION4O6(y)

4.08

ASSEMBLY 204(u),
SHARED-LIBRARY
METHOD 206(v)

GRANTS 404(X) PERMISSION4O6(Y)

U.S. Patent Jun. 22, 2010 Sheet 5 of 6 US 7,743.423 B2

APP DOMAIN 114) ASSEMBLY

Method 2 ?method
Elton 206(1) 206(D) a PATH
502(b)

SIMULATED STACK
504 ^ WALK 500

506 Assembly/Method
Entry Point

22ute 56 Gather Permissions
Not Yet Gathered YES

S10

Estimate Security Requests
Made Against All Assemblies More

Execution
Paths?

With Respect To the
Execution Path Using
Gathered Permissions

US 7,743,423 B2
1.

SECURITY REQUIREMENT
DETERMINATION

TECHNICAL FIELD

The present invention relates generally to the execution of
managed code in a managed environment, and more particu
larly to an environment where a computing device compiles
managed code into native code that is executed by a common
language runtime via the computing device's operating sys
tem, where the managed code environment enforces partial
trust security contexts.

BACKGROUND

An application program interface (API) for a network plat
form can be used by developers to build Web applications and
services. One such API is the .NETTM platform created by
Microsoft Corporation of Redmond, Wash., USA. The
.NETTM platform is a software platform for Web services and
Web applications implemented in a distributed computing
environment. The .Net framework is not only intended for
web services and application development, but is also
intended as a general programming platform that enables
both web services and application development as well as rich
client application development. The .NETTM platform allows
integration of a wide range of services that can be tailored to
the needs of the user. As used herein, the phrase application
program interface or API includes traditional interfaces that
employ method or function calls, as well as remote calls (e.g.,
a proxy, stub relationship) and SOAP/XML invocations.
The .NETTM platform uses a framework that includes a Com
mon Language Runtime (CLR). Additional information
regarding the basics of the .NETTM Framework can be found
in a number of introductory texts, such as Pratt, Introducing
Microsoft .NET. Third Edition, Microsoft Press, 2003.
The CLR is the heart of the Microsoft .NETTM Framework

and provides the execution environment for all .NET code.
Thus, code that is built to make use of the CLR, and that runs
within the CLR, is referred to as “managed code.” The CLR
provides various functions and services required for program
execution, including Just-In-Time (JIT) compilation, allo
cating and managing memory, enforcing type safety, excep
tion handling, thread management and security. The CLR is
loaded upon the first invocation of a .NETTM routine. Because
managed code is JIT compiled to native code prior to execu
tion, significant performance increases can be realized in
Some scenarios. Managed code uses Code Access Security
(CAS) to prevent assemblies from performing certain opera
tions that could represent a security violation.
When writing managed code, the deployment unit is called

an assembly which is a collection of one or more files that are
versioned and deployed as a unit. An assembly is the primary
building block of a .NETTM Framework application. All man
aged types and resources are contained within an assembly
and are marked either as accessible only within the assembly
or as accessible from code in other assemblies. An assembly
is packaged as a data link library (DLL) file or executable
(EXE) file. While an executable can run on its own, a DLL
must be hosted in an existing application.
One or more methods in an assembly may call to access

protected resources associated with another method. This call
can be a cross assembly call (e.g., a call to a different assem
bly), or the call can be a call from one method to another
within the same assembly. Various permissions can be
requested by a method that contains security relevant
resources, and various permissions can be assigned to each

5

10

15

25

30

35

40

45

50

55

60

65

2
method. The assembly that contains the caller method must
have been granted the required permissions before access is
provided to the protected security relevant resources. Other
wise, a security exception will be triggered.
As a developer develops an application that will run in a

managed environment, the application can be successively
executed in order to find out if the application’s source code
has been written so that it will operate correctly in the targeted
security context Alternatively, a manual review of every line
of code in the application being developed can be made to try
to find the security requirements associated with the calls that
would be made during an actual execution of the application.
Then, the results of the manual review can be summarized as
to the security requirements for its execution. This Summary
can then be compared to a maximum level of security that the
developer may not exceed for the application being devel
oped.
Of course, both the try-and-error execution technique and

the manual review technique can be time consuming and
impractical to perform, as knowledge of the code in assem
blies not written by the developer is required, i.e., a security
check might be triggered by a shared managed library that the
developer uses in order to implement a feature. It would be an
advance in the art to provide an efficient technique to derive
what the minimum security requirements are for executing
managed code prior to a deployment of the managed code,
prior to a release of the managed code, and/or prior to an
actual execution of the managed code.

SUMMARY

In one implementation, a tool is provided that estimates
security requirements needed to execute managed code so as
to avoid a security exception. In another implementation, all
execution paths of assemblies in managed code are statically
simulated to find a set of permissions for each execution path,
where each call in each execution path has a corresponding
permissions set The managed code can be a managed shared
library or an assembly.

In a still further implementation, a computing environment
for a computing device has managed and native code portions
and logic. The managed code portion includes a virtual
machine and a plurality of assemblies each being managed
code in a managed shared library (data link library—DLL) or
in an executable (EXE). The native code portion includes an
execution engine for the virtual machine and an operating
system under the execution engine. The logic is configured to
simulate the execution of all possible calls from one assembly
to another for all possible execution paths of managed code,
where each assembly call has a corresponding permissions
set The logic derives a union of the permissions sets from each
assembly call. The union can be used to estimate security
requirements needed to execute the managed code so as to
avoid a security exception.

In yet another implementation, a static simulation is per
formed of the execution of every data and control flow for
managed code. From the simulated execution, an estimate is
derived of the minimum security requirements needed to
dynamically execute the managed code without triggering a
security exception.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the implementations
may be had by reference to the following detailed description
when taken in conjunction with the accompanying drawings
wherein:

US 7,743,423 B2
3

FIG. 1 illustrates one embodiment of an environment for
computing device having a virtual machine (VM) in a man
aged code portion, where the managed code portion includes
a shared managed library and a plurality applications each of
which includes one or more files having different file types,
where the files are complied into one or more assemblies that
can be placed within one or more application domains for
execution, and where the environment has a native code por
tion that includes a common language runtime and an oper
ating System.

FIG.2 depicts in further detail the managed code portion of
the environment of FIG. 1, where each assembly can be
placed into each application domain for execution and the
shared managed library includes one of more methods.

FIG. 3a depicts a plurality of assemblies and all possible
execution paths of a corresponding application through the
assemblies, as well as the union of the permission sets
required for execution of the possible execution paths.

FIG. 3b depicts a plurality of entry points in a shared
managed library, as well as the union of the permission sets
required for executions that are associated with the entry
points.

FIG. 4 depicts all possible control and data flows through
the methods in one or more assemblies that correspond to an
application, where a set of grants and a set of permissions are
associated with each method, where an estimation of the
security requirements is made for executing the application
without the occurrence of a security exception, and where the
estimated security requirements are derived from the union of
all the permission sets.

FIG. 5a is an exemplary data structure representing an
application domain that corresponds to an application that is
put into the application domain for execution

FIG. 5b is a flowchart for an implementation in which a
simulated execution follows all possible code paths from an
entry point of each of one or more assemblies associated with
an application in order to estimate corresponding security
requirements for executing the application.

FIG. 6 is a block diagram of an exemplary environment
capable of Supporting an exemplary computing device of
FIG 1.
The same numbers are used throughout the disclosure and

figures to reference like components and features. Series 100
numbers refer to features originally found in FIG. 1, series
200 numbers refer to features originally found in FIG. 2,
series 300 numbers refer to features originally found in FIG.
3, and so on.

DETAILED DESCRIPTION

It is advantageous to simulate the execution of an applica
tion in order to find out what permissions will be requested by
the corresponding managed code that might be called during
an actual execution of the application. The managed code
corresponds to one of more assemblies each of which is
associated with permissions (e.g., a permission grant set). An
assembly includes one or more methods. Each method
requires actual permissions to be executed without a security
exception being triggered. In essence, an application is
mapped, via one or more corresponding assemblies, to an
application domain (e.g., an executable—EXE). Stated oth
erwise, one or more assemblies can be put into an application
domain to be executed. As such, an application that has an
application manifest with Security requests will have permis
sions (e.g., a permission grant set) through its corresponding
one or more assemblies. Accordingly, when a first assembly
calls a method on a second assembly, the second assembly has

5

10

15

25

30

35

40

45

50

55

60

65

4
two (2) corresponding permission sets: (i) the grant set of the
second assembly, and (ii) the union of the permissions
required to call that method without a security exception
being triggered.

After an application has been simulated and the permis
sions requested by the corresponding managed code are
known for an actual execution of the application, the security
requirements for running the application, without the occur
rence of a security exception, can be estimated. This estimate
can be used by a developer of the application to verify
whether the corresponding code meets, or fails to meet, the
level of security that the application is likely to be granted. If
there is a failure, the developer can modify the managed code
and use an implementation of the estimation tool until it is
found that the level of security that the application is likely to
be granted matches what is required for its actual execution.
The total security requirements for using a shared managed

library can be also be estimated. To do so, an execution
simulation is made for each assembly in the library. In that a
library may have multiple known or public entry points, all
data and control flows from each entry point are examined in
the simulated execution. From each public entry point, each
method in each assembly may call for access to another
method in another assembly. For each Such call, certain per
missions are required in order to prevent a security exception
from occurring during an actual execution. By finding a set of
permissions (e.g., for instance, the union of all these permis
sions), security requirements for using the shared managed
library can be estimated. Additionally, a simulated execution
of the shared managed library can be made to produce sepa
rate permission sets for each library entry point, which infor
mation can be used by application writers that consume some,
but not all, of the functions of the shared managed library.

Normally an application has only one (1) known entry
point through which corresponding assemblies can be
executed. The assembly defines a security boundary. The
Common Language Runtime (CLR) implements a Code
Access Security (CAS) system. What each caller method of
each assembly is allowed to do depends on the intersection of
what permissions that caller method requests and what per
missions are granted to that caller method at the time when the
caller method is executed. The CAS security allows the
execution of assemblies in restricted security contexts, mean
ing that all methods in the respective assembly can only call
those methods that do not demand any permissions or that
demand only those permissions that the assemblies have been
granted. The following discussion presents implementations
for estimating, through a simulated execution of all code
paths corresponding to an application or of a shared library,
the level of security that will be required in order to execute
the application or shared library correctly in the intended
security context.
Computing Device Environment
FIG. 1 shows an implementation that illustrates a comput

ing device 102 utilizing a virtual machine (VM) 110 having
architecture to run on different platforms. VM 110 is stacked
on an interface 122 between a managed code portion and a
native code portion. According, interface 122 can be an inter
face to different operating systems and different applications.
The native code portion includes an operating system 104.

Over the operating system 104 is a module 106 that include a
CLR loader and a Just-In-Time (JIT) compiler component.
The managed code portion includes applications 124 with
corresponding files 116(n), application (app) domains 114(j),
and VM110. Each file 116(n) has a respective type 120(p)and
a user code 118(o) that can be coded in a variety of different
programming languages.

US 7,743,423 B2
5

FIG. 1 illustrates an exemplary arrow 126 where files 116
having different file types 120(p) are compiled into an Inter
mediate Language (IL) and metadata contained in one or
more managed assemblies 112(1-K), (1-L) within respective
app domains 114(1-J). As such, this compilation 126 enables
the files 116 of arbitrary (and possibly expanded/extended)
types 120(p) to be compiled into at least one managed assem
bly 112 within one application (app) domain 114.

It should be understood that each file 116(n) may not physi
cally include its code 118(o). However, the source code for
each code 118(o) is inferable or otherwise derivable from the
contents of its file 116(n). Although a finite number of files
116 and types 120 are illustrated in and/or indicated by FIG.
1, any number of files 116 and types 120 may be involved in
compilation 126. Compilation 126 may comprise a pluggable
build architecture that interfaces with modules assigned to
files 116. These modules may be tailored to the corresponding
arbitrary file types 120 of files 116 in order to facilitate a
compilation 126 of their code 118 into a target managed
assembly 112 within an app domain 114.
The CLR loader of component 106, which is stacked upon

the computing device's 102 operating system 104, operates in
the native code portion as the execution engine for the virtual
machine 110. The JIT aspect of component 106 compiles
managed assemblies 112 (1-K), (1-L) within respective app
domains 114(1-J) into native code to be executed by the CLR
loader of component 106. Accordingly, computing device
102 provides a virtual machine 110 operating in a managed
code portion for executing applications 124.
The managed code portion of FIG. 1 is further illustrated

FIG. 2 and particularly shows the presence of one or more
methods that are associated with each assembly. In particular,
one or more assemblies 112(k), (I) can be placed into each app
domain 114(f) for execution. Each assembly 112(k), (I) can
include one or more methods 202. Shared managed library
108 also includes one or more assemblies 204(u) each of
which includes one or more methods 206(v), (w). In the case
of the NET product produced by Microsoft Corporation, the
shared managed library 108 can be a base class library for the
NET framework. Each application 124 corresponds to one or
more assemblies 112(k), (I) for which there is one (1) known
or public entry point from which execution of the applica
tion 124 begins. During execution, a method in one assembly
may call for access to another method in a different assembly.
Both caller and callee methods can be in the same or a differ
ent app domain (i). The callee method can also be with in an
assembly (u) of the shared managed library 108. In a cross
assembly call from caller to callee, the caller is required to
have certain permissions in order to have access to protected
resources associated with the callee. If the caller lacks the
necessary permissions, a security exception will occur. If no
security exception occurs, the caller is permitted access to the
callee. After access has been verified, in one scenario, the JIT
aspect of component 106 compiles the corresponding man
aged code into native code to be executed by the CLR loader
of component 106 as shown in FIG. 1.
The execution of an application 124(a) can be simulated

statically, that is—without actually running the correspond
ing managed code, in order to simulate all possible calls and
the corresponding flow of argument data using intra and extra
method data flow analysis. This simulation can include an
exhaustive gathering of the permission sets corresponding to
all methods in all assemblies in application 124(a) that call
other methods. The simulated execution of application 124
(a)'s managed code provides an estimate of what types of
permissions the actual execution will require. A graphical
depiction 300 of an all possible calls during a simulated

10

15

25

30

35

40

45

50

55

60

65

6
execution of the managed code corresponding to an applica
tion 124(a) is seen in FIG.3a. During an actual execution of
application 124(a), managed code corresponding to ten (10)
different assemblies could be executed. As shown in depic
tion 300, assembly 1 can only be a caller, assemblies 2, 7-9,
and 10 can only be callees, and assemblies 3-6 can be both
caller and callee. To estimate the permissions required for an
actual execution of application 124(a), the union of all per
missions for accessing each of the assemblies 1-10 is found.
This union is represented by P, UP. U. . . U Po. Once this
union is found, it can be associated as a required permission
set with application 124(a), Such as by placing the permission
set in a manifest that can be accessed by other applications.
Alternatively, in the permissions for all the methods called by
the assemblies 1-10 that correspond to an application, there
might be methods in assembly 10 that are never called by the
application but, if called, would require a higher level of trust.
The execution of each assembly of managed code that

corresponds to application 124(a) can be simulated to find the
minimum required permission set such that its actual execu
tion is likely not to trigger a security execution. The union of
all minimum required permission sets across all assemblies
for managed code corresponding to application 124(a) will
provide the minimum required permission sets for an actual
execution of application 124(a). A developer of application
124(a), or any component thereof, can use the estimated
permission sets gathered from the corresponding simulation
in various ways. Implementations include an accounting for
not only the assemblies that are directly part of the applica
tion, but also include an accounting for the assemblies that are
in shared libraries or in the operating system. As such, not just
assemblies of the application written by an application devel
oper are accounted for, but also system assemblies are
included in the accounting. This accounting is part of the
search through the transitive closure of all call graphs starting
with each entry point of one or more assemblies correspond
ing to the application or with each entry point of a shared
library under investigation. Accordingly, the developer, for
instance, may use the results to further debug or refine the
managed code being developed so that the developer's code
can be made to be consistent with known security require
ment limitations.

FIG. 3b shows ten (10) method entry points in one (1)
exemplary shared managed library 108. Unlike an applica
tion, which corresponds to only one (1) public entry point, the
shared managed library 108 has multiple public entry points.
In order to evaluate the permissions that are required for any
use of the library 108, each method entry point 1-10 is evalu
ated, where each method entry point can correspond to a
module from a data link library (e.g., *.dll). The evaluation
includes an estimate for the permissions required to access
each method entry point 1-10. A method within an assembly
in library 108 may call another method in a different assem
bly. Each Such call will have an associated permission set. A
union of the resulting permission sets for each method in each
assembly in library 108 yields the required permission sets
for any use of library 108, where any such use is likely not
triggera security exception. This union is represented by PU
P. U...U. Po. Once this union is found, it can be associated
with library 108, such as by placing the permission set in a
manifest that can be accessed by other applications. Alterna
tively, a developer of library 108 can use the permission sets
derived from the simulation to further develop, debug, or
refine the components of the library 108, including its assem
blies and corresponding methods. Shared libraries often can

US 7,743,423 B2
7

have multiple assemblies (e.g., multi-module assemblies),
although typically one (1) assembly calls into other shared
assemblies.

FIG. 4 presents a flowchart of an exemplary process 400 for
estimating the security requirements for application 124(a) to
be executed without the occurrence of a security exception.
This estimation is made by a simulation of an execution of
managed code corresponding to application 124(a). As part of
the simulation, one or more simulated call stacks 402 are
formed. Arrow 408 indicates that the simulated call stack 402
grows downward with the number of assemblies that are in an
execution path. As shown at block 416 of FIG. 4, a method
206(v) of a shared library assembly 204(u) demands a per
mission 406(Y) of its caller in order for the calls to have
access to its corresponding protected resources. Each assem
bly corresponding to an application in the simulated call stack
402, shown in FIG. 4 as an application assembly 112, has a
set of corresponding grants 404. Each application assembly
112 on the simulated call stack 402 has a method seen in FIG.
4 has an application method 202. FIG. 4 also shows a
shared library method 206(v) in an assembly associated
with a shared library.

The CAS allows an administrator to specify privileges that
each managed assembly has, based on a degree of trust, if any,
in that managed assembly. When managed code makes a
runtime call to access a protected resource, the runtime
checks to see whether the administrator has granted the
required privileges for access to that assembly. The CLR
walks the call stack from the called assembly up to the top of
the call Stack when performing this check so that an untrusted
top level assembly will not bypass the security system by
employing trusted malicious code lower down in the call
stack. An administrator can grant an assembly various Secu
rity permissions, such as enabling the assembly to execute,
allowing calls to be made to unmanaged assemblies, enabling
the assembly to create and control application domains, etc.

During an actual execution, permission 406(Y) of block
416 will be compared with the corresponding set of grants
404 for all of the callers above block 416, as indicated by
arrows 410. This access check is performed in the CLR of
component 106 seen in FIG.1. If permission 406(Y) is met by
each of the grants in the simulated call stack 402, then the
execution of shared library method 206(v) will be able to run
without triggering a security exception.
Once every possible code path for application 124(a) has

been simulated, such as has been demonstrated for shared
library method 206(v), and all corresponding permissions
406 have been gathered, the union of these is found as shown
by arrow 412. This union, which is expressed as Permission
406(1) u Permission 406(2) u . . . u Permission 406(Y),
represents the minimum permission set that is required to
execute application 124(a) without triggering a security
exception. Similarly, estimates can be made of the minimum
security requirements that would be triggered against other
managed code. Such managed code includes an application
through its corresponding assemblies oran individual assem
bly, where the assembly is one or more files that can contain
all managed types and resources and which can be marked as
being either accessible only within the assembly or as acces
sible from code in other assemblies.
The CAS has a policy system that grants assemblies per

missions to access protected resources. The CAS also has an
enforcement system that includes methods that expose Secu
rity relevant resources (e.g., file or registry access). This
enforcement system demands that callers of the security rel
evant resources have been granted the appropriate
permission(s) by the CAS policy system. Accordingly, imple

10

15

25

30

35

40

45

50

55

60

65

8
mentations feature a tool for estimating the permission
checks that are triggered either againstan application through
its corresponding one or more assemblies or through a shared
library entry point.

FIG.5a depicts an exemplary app domain 114(j) represent
ing managed code corresponding to an application 124(a)
through its corresponding assemblies 204(1) through 204(C).
Each assembly 204(1-C) can be put into app domain 114(j)
for execution. Each assembly 204(c) is associated with one of
more methods 206(d). Assemblies 204(1-C) can have a plu
rality of execution paths 502(1-B). Each execution path 502
(b) represents a different data and control flow.
FIG.5b illustrates an exemplary process 500 that simulates

stack walks for one or more assemblies corresponding to an
application. Stated otherwise, process 500 simulates all pos
sible flows of argument data using intra method and extra
method data flow analysis in a static simulation of the execu
tion of the one or more assemblies corresponding to the
application. Moreover, process 500 uses the stack walk pro
cedure for all possible execution paths that correspond to the
application. Assemblies that correspond to the application
typically do, but do not have to, execute within a single
application domain. This stack walk procedure simulates all
possible execution paths in order to find the security needs of
the application in the context of its execution in the CLR
where partial trust security contexts can be enforced.
At block 504 of process 500, an execution path in entered.

Process 500 moves to block 506 where a public entry point of
a method in an assembly is entered. Thereafter, the permis
sion set for the method in the assembly is gathered at block
508. If the permission set for that method had been previously
gathered (e.g., for every method that has been reached, all of
the relevant security requirements for that method have been
directly gathered), a duplication of Such gathering can be
avoided if the same method is later called by another method.
After the permission set has been gathered, or a duplicate of
Such gathering can be avoided, process 500 passes control to
a query 510. Query 510 determines whether the method calls
another method. If the method calls another method, the
control of process 500 moves to block 506 which represents
the entry point of the method being called. Process 500 then
continues as set forth above.

If query 510 determines that the method does not call
another method, then process 500 moves to a query 512. At
query 512, it is determined whether there are any more execu
tion paths that have not yet been simulated by Stack walking.
If so, then control of process 500 moves back to block 504 for
a simulation of an execution starting at the next execution
path. If, however, query 512 determines that all of the execu
tion paths of the assemblies corresponding to the application
have been simulated by the stack walking procedure, then all
permission sets of each execution path for the assemblies
corresponding to the application will be deemed to have been
gathered. Once query 512 is determined in the affirmative,
control of process 500 moves from query 512 to a block 514.
At block 514, an estimate of security requests is made

against all assemblies corresponding to the application with
respect to all execution paths. This estimate uses the gathered
permissions. The gathered permissions can represent a set of
permissions. This set of permissions can be the union of all
permission sets across all possible execution paths of the
assemblies corresponding to the application. This union rep
resents a predetermined estimation of the security require
ments that will be triggered against the assemblies corre
sponding to the application during their actual execution.
This estimation provides an understanding of what privileges

US 7,743,423 B2
9

the corresponding managed code would require in order to
have an actual execution that would not be likely to trigger a
security exception.

Process 500 can be applied similarly to a shared managed
library to estimate the minimum required security access
privileges in order to fully use the library while avoiding an
security exception. The application of process 500 to a shared
managed library would be different in that block 504 would
represent an entry point for an assembly and block 512 would
represent a query as to whether there were any more assem
blies in the library for which the execution had not yet been
simulated. Finally, block 514 would refer to the shared man
aged library rather than to the assemblies corresponding to an
application.
A Computer System FIG. 6 shows an exemplary computer

system that can be used to implement the processes described
herein. Computer 642 includes one or more processors or
processing units 644, a system memory 646, and a bus 648
that couples various system components including the system
memory 646 to processors 644. The bus 648 represents one or
more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accel
erated graphics port, and a processor or local bus using any of
a variety of bus architectures. The system memory 646
includes read only memory (ROM) 650 and random access
memory (RAM) 652. A basic input/output system (BIOS)
654, containing the basic routines that help to transfer infor
mation between elements within computer 642. Such as dur
ing start-up, is stored in ROM 650.

Computer 642 further includes a hard disk drive 656 for
reading from and Writing to a hard disk (not shown), a mag
netic disk drive 658 for reading from and writing to a remov
able magnetic disk 660, and an optical disk drive 662 for
reading from or writing to a removable optical disk 664 Such
as a CDROM or other optical media. The hard disk drive 656,
magnetic disk drive 658, and optical disk drive 662 are con
nected to the bus 648 by an SCSI interface 666 or some other
appropriate interface. The drives and their associated com
puter-readable media provide nonvolatile storage of com
puter-readable instructions, data structures, program modules
and other data for computer 642. Although the exemplary
environment described herein employs a hard disk, a remov
able magnetic disk 660 and a removable optical disk 664, it
should be appreciated by those skilled in the art that other
types of computer-readable media which can store data that is
accessible by a computer. Such as magnetic cassettes, flash
memory cards, digital video disks, random access memories
(RAMs), read only memories (ROMs), and the like, may also
be used in the exemplary operating environment.
A number of program modules may be stored on the hard

disk 656, magnetic disk 660, optical disk 664, ROM 650, or
RAM 652, including an operating system 670, one or more
application programs 672 (such as the managed code execu
tion simulation application discussed above), cache?other
modules 674, and program data 676. A user may enter com
mands and information into computer 642 through input
devices such as a keyboard 678 and a pointing device 680.
Other input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, Scanner, or the like. These
and other input devices are connected to the processing unit
644 through an interface 682 that is coupled to the bus 648. A
monitor 684 or other type of display device is also connected
to the bus 648 via an interface, such as a video adapter 686. In
addition to the monitor, personal computers typically include
other peripheral output devices (not shown) Such as speakers
and printers.

10

15

25

30

35

40

45

50

55

60

65

10
Computer 642, which can be a server or a personal com

puter, commonly operates in a networked environment using
logical connections to one or more remote computers, such as
a remote computer 688. The remote computer 688 may be
another server or personal computer, a router, a network PC,
a peer device or other common network node, and typically
includes many or all of the elements described above relative
to computer 642. The logical connections depicted in FIG. 6
include a local area network (LAN) 690 and a wide area
network (WAN) 692. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets, and the Internet.
When used in a LAN networking environment, computer

642 is connected to the local network through a network
interface or adapter 694. When used in a WAN networking
environment, computer 642 typically includes a modem 696
or other means for establishing communications over the
wide area network 692, such as the Internet. The modem 696,
which may be internal or external, is connected to the bus 648
via a serial port interface 668. In a networked environment,
program modules depicted relative to the personal computer
642, or portions thereof, may be stored in the remote memory
storage device. It will be appreciated that the network con
nections shown are exemplary and other means of establish
ing a communications link between the computers may be
used.

Generally, the data processors of computer 642 are pro
grammed by means of instructions stored at different times in
the various computer-readable storage media of the com
puter. Programs and operating systems are typically distrib
uted, for example, on floppy disks or CD-ROMs. From there,
they are installed or loaded into the secondary memory of a
computer. At execution, they are loaded at least partially into
the computer's primary electronic memory. The invention
described herein includes these and other various types of
computer-readable storage media when such media contain
instructions or programs for implementing the blocks
described below in conjunction with a microprocessor or
other data processor. The invention also includes the com
puter itself when programmed according to the methods and
techniques described herein.

For purposes of illustration, programs and other executable
program components such as the operating system are illus
trated herein as discrete blocks, although it is recognized that
Such programs and components reside at various times in
different storage components of the computer, and are
executed by the data processor(s) of the computer.

Various modules and techniques may be described herein
in the general context of computer-executable instructions,
Such as program modules, executed by one or more comput
ers or other devices. Generally, program modules include
routines, programs, objects, components, data structures, etc.
that perform particular tasks or implement particular abstract
data types. Typically, the functionality of the program mod
ules may be combined or distributed as desired in various
embodiments.
An implementation of these modules and techniques may

be stored on or transmitted across some form of computer
readable media. Computer readable media can be any avail
able tangible media that can be accessed by a computer. By
way of example, and not limitation, computer readable media
may comprise "computer storage media.”
“Computer storage media' includes Volatile and non-vola

tile, removable and non-removable media implemented in
any method or technology for storage of information Such as
computer readable instructions, data structures, program
modules, or other data. Computer storage media includes, but

US 7,743,423 B2
11

is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other tangible medium which can be used to store the 5
desired information and which can be accessed by a com
puter.
The present invention may be embodied in other specific

forms without departing from its spirit or essential character
istics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

10

15

What is claimed is:
1. A method implemented on a computing device having

instructions stored on a computer-readable storage media and
executable by a processor, to estimate security requirements
needed to execute a managed code for a developer prior to an
actual execution of the managed code, comprising:

simulating the execution of all calls from an assembly to
another assembly for all execution paths of one or more
assemblies in the managed code, wherein the assembly
comprises one or more files versioned and deployed as a
unit, wherein the managed code is a managed shared
library or an executable, wherein all managed code is
contained within the one or more assemblies, wherein
the execution of each assembly is statically simulated
without actually running a corresponding managed code
to simulate all possible calls and corresponding flow of
argument data:

finding a set of required permissions for each execution
path by one or more simulated Stack walks that each
include a plurality of the assemblies, wherein each call
in each execution path has a corresponding permissions
set, wherein each assembly has one or more execution
paths representing a different data and a control flow,
and wherein the simulated Stack walk comprises:
entering an execution path corresponding to a static

simulation of execution of the assembly;
entering a public entry point of a method in the assem

bly:
gathering a permission set for the method in the assem

bly:
determining whether the method in the assembly calls

another method in the assembly or in an another
assembly;

gathering a permission set for the another method called
by the method in the assembly; and

creating a union of the gathered permission sets; and
deriving the security requirements for execution paths cor

responding to the one or more assemblies by using the
union of the gathered permission sets across the execu
tion paths corresponding to the one or more assemblies,
wherein the union estimates the security requirements
that will be triggered against the one or more assemblies
during the actual execution of the one or more assem
blies and whether a security exception will be triggered
during the actual execution.

2. The method as defined in claim 1, wherein the execution

25

30

35

40

45

50

55

60

paths for only one said assembly in managed code are simu
lated to find the set of required permissions for each said
execution path by a union of the permissions for each said
execution path.

65

12
3. The method as defined in claim 1, wherein:
the one or more assemblies in managed code correspond to

an application; and
the set of required permissions for each said execution path

comprises a union of the permissions for each said
execution path.

4. The method as defined in claim 1, wherein:
the assemblies in managed code correspond to a shared

library; and
the set of required permissions for each said execution path

comprises one separate permission set per entry point in
the shared library.

5. The method as defined in claim 1, wherein the set of
required permissions for each said execution path comprises
a union of the permissions for each said execution path.

6. The method as defined in claim 1, wherein one of more
of the calls in at least one said execution path is a cross
assembly call.

7. The method as defined in claim 1, wherein:
the managed code is built to make use of a common lan

guage runtime;
each said assembly is packaged as an executable entity or

as a data link library entity and
each said assembly includes one or more methods.
8. The method as defined in claim 7, wherein the simulation

of the execution of each said execution path comprises a
simulation of the flow of argument data using intra and extra
method data flow analysis for each said method.

9. The method as defined in claim 1, wherein when the
executable has permissions to execute that are not less than a
union of permission sets for each said execution path, any
dynamic execution of the executable will not trigger a secu
rity exception.

10. One or more computer storage media having a tangible
component including machine readable instructions for
implementing the method as defined in claim 1.

11. In a managed code environment, a method imple
mented on a computing device having instructions stored on
a computer-readable storage media and executable by a pro
cessor, comprising:

simulating calling from one assembly to another for which
a permission set is required, wherein the simulation
comprises one or more simulated Stack walks that
include two or more of the assemblies, each assembly
being managed code in a library, wherein an execution of
each assembly is statically simulated without actually
running a corresponding managed code to simulate all
possible calls and corresponding flow of argument data,
and wherein the simulated Stack walk comprises:

entering a public entry point of a method in the assembly:
gathering a permission set for the method in the assembly:
determining whether the method in the assembly calls

another method in the assembly or in an another assem
bly:

for each called method:
gathering a permission set for the another method called by

the method in the assembly; and
determining whether the another method calls a subse

quent method in the assembly or in the another assem
bly; and

creating a union of the gathered permission sets;
repeating the calling for each assembly in the managed

code and for all possible execution paths of the managed
code;

repeating the entering for each public entry point in the
library;

US 7,743,423 B2
13

finding the union of the permission sets corresponding to
each call; and deriving security requirements for execu
tion paths corresponding to the assemblies by using the
union of the gathered permission sets across the execu
tion paths corresponding to the one or more assemblies,
wherein the union estimates the security requirements
that will be triggered against the assemblies during an
actual execution of the assemblies and whether a secu
rity exception will be triggered during the actual execu
tion.

12. The method as defined in claim 11, wherein the man
aged code environment comprises:

a managed code portion including:
the assemblies; and
a virtual machine;

a native code portion including:
an execution engine for the virtual machine; and
an operating system under the execution engine.

13. The method as defined in claim 11, wherein:
the managed code is built to make use of a common lan

guage runtime;
each said assembly is packaged as a data link library entity

and
each said assembly includes one or more methods.
14. The method as defined in claim 11, wherein when the

assemblies corresponding to the application have permis
sions to execute that are not less than the union of permission
sets for each said execution path, any dynamic execution of
the assemblies corresponding to the application will not trig
ger a security exception.

15. The method as defined in claim 11, wherein the man
aged code environment enforces partial trust security con
teXtS.

16. One or more computer storage media having a tangible
component including machine readable instructions for
implementing the method as defined in claim 11.

17. One or more computer storage media having a tangible
component comprising instructions that, when executed by a
processor, perform a static simulation of an execution of
every data and control flow for managed code from which an
estimate is derived of the minimum security requirements
needed to dynamically execute the managed code without
triggering a security exception, the instructions comprising:

simulating, statically, one or more stack walks for each data
and a control flow for the managed code, wherein the
managed code corresponds to one or more assemblies,
wherein the one or more stack walks comprise two or
more of the assemblies, and

finding a set of required permissions for each execution
path by the stack walks, wherein each call in each execu
tion path has a corresponding permissions set, wherein
each assembly has one or more execution paths repre
senting a different data and control flow, and wherein the
simulated Stack walk comprises:

entering a public entry point of a method in an assembly;
gathering a permission set for the method;
determining whether the method calls another method;
for each called method:

gathering a permission set for the called method; and
determining whether the called method calls a subse

quent method; and
creating a union of the gathered permission sets; and

deriving the security requirements for execution paths corre
sponding to the two or more assemblies by using the union of
the gathered permission sets, wherein the union estimates the

10

15

25

30

35

40

45

50

55

60

65

14
security requirements that will be triggered against the two or
more assemblies during an actual execution of the two or
more assemblies.

18. The one or more computer storage media as defined in
claim 17, wherein:

the managed code, which comprises a plurality of assem
blies, is built to make use of a common language runt
ime;

each said assembly is packaged as an executable entity or
as a data link library entity and

each assembly includes one or more methods.
19. The one or more computer storage media as defined in

claim 17, wherein the dynamic execution of the managed
code occurs in a managed code environment comprising:

a managed code portion including:
the managed code has one or more assemblies and is a

library or an executable; and
a virtual machine;

a native code portion including:
an execution engine for the virtual machine; and
an operating system under the execution engine.

20. The one or more computer storage media as defined in
claim 19, wherein:

the managed code is built to make use of a common lan
guage runtime;

each assembly is packaged as an executable entity or as a
data link library entity and

each assembly includes one or more methods.
21. The one or more computer storage media as defined in

claim 19, wherein:
each call in each simulated Stack walk has a corresponding

permissions set; and
the derived estimate is a union of the permissions sets.
22. The one or more computer storage media as defined in

claim 19, wherein the managed code environment enforces
partial trust security contexts.

23. An apparatus comprising:
means for processing:
means for storing information in memory coupled to the
means for processing:

virtual machine means, stored in the memory, in a managed
code portion, for operating a plurality of assemblies in
managed code, wherein the managed code is a managed
shared library or an executable and is in the managed
code portion;
execution engine means, in a native code portion, for

executing the virtual machine means;
means, in the native code portion, for providing an oper

ating System;
means for making a call in the managed code portion for

access by one assembly to another assembly for
which a permissions set is required;

means in the managed code portion for gathering the
permissions set from each call;

means in the managed code portion for deriving a union
of the gathered permissions sets;

means in the managed code portion for statically simu
lating the execution of all possible execution paths for
the managed shared library or the executable without
actually running a corresponding managed code, to
derive therefrom the derived union of the gathered
permissions sets wherein the means for simulating the
execution performs, for each execution path, one or
more simulated Stack walks that each include a plu
rality of assemblies, and wherein the one or more
simulated Stack walks comprise:

US 7,743,423 B2
15

means for entering a public entry point of a method in the
assembly;

means for gathering a permission set for the method;
means for determining whether the method calls another

method;
for each called method:
means for gathering a permission set for the called

method;
means for determining whether the called method calls a

Subsequent method;
means for repeating the previous gathering and deter

mining until any gathered permission set is duplica
tive; and

means for creating a union of the gathered permission
sets; and

means for deriving security requirements for execution
paths corresponding to the plurality of assemblies by
using the union of the gathered permission sets across
the execution paths corresponding to the plurality of
assemblies, wherein the union estimates whether a secu
rity exception will be triggered during an actual execu
tion of the assemblies.

24. The apparatus as defined in claim 23, further compris
ing:

means for compiling the assemblies from an intermediate
language code and metadata into native code; and

means for loading the native code with a Common Lan
guage Runtime loader in the native code portion to load
the compiled native code, wherein the execution engine
means executes the compiled native code in the native
code portion.

25. The apparatus as defined in claim 23, wherein the
managed code portion further comprises one or more files
associated with user code that, when compiled into an inter
mediate language code and metadata generated by a language
compiler, are represented by the assemblies.

26. The apparatus as defined in claim 23, wherein the
execution engine means in the native code portion further
comprises a compiler to compile each said assembly into
native code for execution by the native code portion.

27. The apparatus as defined in claim 23, wherein the
execution engine means in the native code portion further
comprises:

a Just In Time compiler to compile each said assembly into
native code; and

a common language runtime loader to load the compiled
native code for execution by the native code portion.

28. The apparatus as defined in claim 23, further compris
ing:

means, in the native code portion, for forming a response to
the call; and

means for returning the response to the first assembly in the
managed code portion.

29. The apparatus as defined in claim 23, wherein:
the managed code is built to make use of a common lan

guage runtime;
each said assembly is packaged as an executable entity or

as a data link library entity; and
each said assembly includes one or more methods.
30. The apparatus as defined in claim 29, wherein the

simulation of the execution comprises, for each said execu
tion path, a simulation of the flow of argument data using intra
and extra data flow analysis for each said method.

31. The apparatus as defined in claim 23, wherein when the
executable has permissions to execute that are not less than

10

15

25

30

35

40

45

50

55

60

65

16
the union of the gathered permissions sets, any dynamic
execution of the executable will not trigger a security excep
tion.

32. The apparatus as defined in claim 23, wherein each call
in each simulated Stack walk has a corresponding permissions
Set.

33. The apparatus as defined in claim 23, wherein the
managed code portion and the native code portion are in a
managed code environment that enforces partial trust security
COInteXtS.

34. A computing device comprising:
a processor;
a memory coupled to the processor,
a managed code portion stored in the memory;
a native code portion stored in the memory; and
an application program in the managed code portion com

prising logic configured to:
statically simulate the execution of all possible calls from

one assembly to another assembly for all possible execu
tion paths of the managed code without actually running
a corresponding managed code to simulate all possible
calls and corresponding flow of argument data, wherein
each assembly call has a corresponding permissions set,
wherein the simulation of the execution comprises one
or more simulated Stack walks that each include a plu
rality of assemblies, and wherein the one or more simu
lated Stack walks comprise:

a public entry point of a method in the assembly:
a permission set for the method;
a determination of whether the method calls another

method;
for each called method:

a permission set for the called method;
a determination of whether the called method calls a

Subsequent method; and
a totality of permission sets such that any Subsequent

permission set is duplicative; and
a union of the permission sets;
derive a union of the permissions sets from each assembly

call; and
derive security requirements for execution paths corre

sponding to the plurality of assemblies by using the
union of the permission sets across the execution paths
corresponding to the plurality of assemblies, wherein
the union estimates the security requirements that will
be triggered against the one or more assemblies during
an actual execution of the assemblies.

35. The computing device as defined in claim 34, wherein
the managed code portion further comprises one or more files
associated with user code that, when compiled into an inter
mediate language code and metadata generated by a language
compiler, are represented by:

the assemblies in the executables; or
the managed shared library.
36. The computing device as defined in claim 34, wherein

the execution engine further comprises:
a compiler to compile each assembly into native code; and
a common language runtime loader to load the compiled

native code.
37. The computing device as defined in claim 34, wherein:
the managed code is built to make use of a common lan

guage runtime;
each assembly is packaged as an executable entity or as a

data link library entity; and
each assembly includes one or more methods.

US 7,743,423 B2
17

38. The computing device as defined in claim 37, wherein
the simulation of the execution comprises a simulation of the
flow of argument data using intra and extra method data flow
analysis for each said method.

39. The computing device as defined in claim 34, wherein
when the executable has permissions to execute that are not
less than the union of the permissions sets from each said
assembly call, any dynamic execution of the executable will
not trigger a security exception.

18
40. The computing device as defined in claim 34, wherein

the managed code portion and the native code portion are in a
managed code environment that enforces partial trust security
COInteXtS.

41. The method of claim 11, wherein the union of the
permission sets separately identifies a permission set for each
public entry point of the library.

k k k k k

