
Tangent Space Guided Intelligent Neighbor Finding

Mike Gashler and Tony Martinez

Abstract— We present an intelligent neighbor-finding algo-
rithm called SAFFRON that chooses neighboring points while
avoiding making connections between points on geodesically
distant regions of a manifold. SAFFRON identifies the suitabil-
ity of points to be neighbors by using a relaxation technique
that alternately estimates the tangent space at each point, and
measures how well the estimated tangent spaces align with each
other. This technique enables SAFFRON to form high-quality
local neighborhoods, even on manifolds that pass very close
to themselves. SAFFRON is even able to find neighborhoods
that correctly follow the manifold topology of certain self-
intersecting manifolds.

I. INTRODUCTION

Many algorithms commonly used in machine learning rely
on local neighborhoods of points. Instance-based learners
(IBL), for example, use consensus among neighboring points
to determine a predicted label for previously unseen points.
As another example, non-linear dimensionality reduction
(NLDR) algorithms measure the distances between neighbor-
ing points to represent structure on the surface of a manifold.
The quality of results obtained by these algorithms is limited
by the quality of the local neighborhoods with which they
operate. When data is known to lie on the surface of a
low-dimensional manifold in high-dimensional space, poor
neighborhood connections are typically defined as those that
shortcut across the manifold structure between geodesically
distant regions of the manifold [1], [2].

We present a novel algorithm called Similarly Aligned
Friend Finding RelaxatiON (SAFFRON) that is designed to
find neighbors on the surface of a non-linear manifold. SAF-
FRON takes advantage of the assumption that the samples
are drawn from the surface of a lower-dimensional manifold
to select neighbors in a manner that intelligently avoids
short-cutting to geodesically distant regions of the manifold
surface. This is useful because many interesting data sets,
including collections of images or documents, tend to form a
non-linear manifold, and SAFFRON enables good neighbors
to be found in such data, even when the manifold structure
passes very near to, or in some cases even intersects with,
itself. SAFFRON makes IBL and NLDR algorithms suitable
for use with a wider class of problems–specifically, those that
sample highly folded manifolds. In cases where the manifold
structure does not fold back on itself, SAFFRON gives results
similar to those obtained with Euclidean distance. Thus, it is
well-suited for general-purpose use.

As a simple example of data the might lie on a manifold
that passes very near to itself, we consider a hypothetical
collection of images that is obtained by a robot with a camera

Mike Gashler and Tony Martinez are with the Department of Computer
Science, Brigham Young University, Provo, Utah, U.S.A. (email: {mike,
martinez}@axon.cs.byu.edu).

as it travels down a hallway inside a building. It might be
useful to use an NLDR algorithm to reduce this collection of
images into fewer dimensions because the intrinsic variables
in this data would correspond with the robot’s position
and orientation. Unfortunately, in many buildings, hallways
contain doors that are very similar in appearance to each
other. Thus, if Euclidean distance is used to find neighboring
images, it might incorrectly determine that two images are
very similar, even though they depict very distant positions
with the hallway. These images may be considered to be
samples from a highly-folded manifold with a topology that
passes very near to itself. Existing techniques may not be
able to find local neighborhoods on such a topology that
correctly represent the structure of the manifold.

The SAFFRON algorithm seeks to intelligently select
local neighborhoods that correctly represent the manifold
structure, particularly when the manifold passes very close to
itself or even intersects itself. We assume that a set of points,
P, has been sampled on the surface of a manifold, such
that each point pi ∈ P is a vector in <d. We also assume
that the tangent-space dimensionality, t, of the manifold
is known. (In cases where t is not known, methods exist
for estimating this value from the data [3].) We refer to
the points that SAFFRON determines to be compatible as
friends, rather than neighbors, because they are determined
by their compatability, rather than just by their proximity.
SAFFRON determines two points to be compatible if the
tangent spaces associated with them are closely aligned.

In order to accurately measure the tangent space at a point,
the structure of the manifold would need to be known a
priori. Unfortunately, most existing techniques for learning
a manifold structure rely on first finding neighborhoods to
represent the local structure. Thus, in order to identify points
that are well-suited to be labeled as friends, SAFFRON uses
a relaxation technique that alternately estimates the tangent
space for each point from its current set of friends, and
then refines the friends based on the alignment of their
tangent spaces. When convergence is detected, SAFFRON
can intelligently identify local neighborhoods in a manner
that is unlikely to shorcut across the manifold topology. A
high-level flow diagram of the SAFFRON algorithm is given
in Figure 1.

The SAFFRON algorithm is comprised of six high-level
steps. We now briefly discuss each of these high-level steps.
A more detailed specification of the algorithm, including all
details necessary for implementation, is given in Section III.
The first high-level step of the SAFFRON algorithm uses
Euclidean distance to find a set of candidate friends, Ci.
|Ci| should be larger than the number of friends, k, that
SAFFRON seeks. A weight vector, wi specifies the affinity

1. Find neighbors, initialize weights

2. Estimate tangent spaces

3. Measure alignment, update weights

4. Detect convergence?

5. Form neighborhoods

6. Optionally clean up with CycleCut

Y

N

Fig. 1. A high-level flow diagram of the SAFFRON algorithm.

between pi and each of its candidate friends in Ci. Initially,
each candidate point is given uniform weight. As the system
relaxes in subsequent steps, the weight will tend to shift
toward the k points in Ci whose tangent spaces are most
aligned with that of pi.

The second high-level step of SAFFRON estimates the
tangent space at each pi ∈ P. This is done by computing
the t-first principal components of Ci. The weight of each
neighbor is used when computing the principal components,
such that as a candidate point gains more weight, it will have
more influence on the estimate of the tangent space.

The third step is the most significant part of SAFFRON,
so we describe it in greater detail. This step measures how
well the tangent-space of pi is aligned with the tangent-
space of each candidate point, and uses this information to
update the weights. In order to establish a suitable metric
for determining how well the tangent spaces of two points
are aligned, we define two types of angles as illustrated in
Figure 2.

The monohedral (one-surface) angle is defined between
a point, pi, with its corresponding tangent space, Si, and
another point, pj . Si is represented such that each row
specifies one of the orthonormal basis vectors in the tangent
space of pi. The monohedral angle is computed by projecting
point pj onto Si, and then computing the angle formed by the
three points 〈pj ,pi,pi +Si(pj−pi)〉. Equation 1 computes
the cosine of the monohedral angle.

m(pi,Si,pj) =
||Si(pj − pi)||
||pj − pi||

(1)

The dihedral (two-surfaces) angle is defined between two
tangent spaces, Si and Sj . It is independent of the points pi

and pj . In the case where t = d − 1, the dihedral angle is
simply the angle formed by the normal vectors of the two
surfaces. Typically, however t < d− 1. In this case, we use
the normal vectors that maximize their distance with their
projection onto the other surface. This can be found with
an eigenvector optimization technique. Equation 2 computes
the cosine of the dihedral angle between two tangent spaces.
This equation works even when the tangent spaces have a
codimensionality greater than 1. The function fpc(M) as
used in Equation 2 returns the first principal component of

Fig. 2. The monohedral (one surface) angle is defined between a point
with its corresponding tangent space, and another point. It is independent
of the second point’s tangent space, and is not commutative. The dihedral
(two surface) angle is defined between two tangent spaces. It is independent
of the points, and is commutative.

the row vectors in M, or the eigenvector with the largest
eigenvalue of the covariance matrix of M.

d(Si,Sj) =
(
Si fpc(ST

j SjST
i − ST

i)
)
·(

Sj fpc(ST
i SiST

j − ST
j)

)
(2)

SAFFRON uses Equation 3 to measure how well two
tangent spaces are aligned. When Si and Sj are mis-aligned,
Equation 3 will return a value close to 0. When they are
aligned, it will return a larger value. The monohedral angle
is measured in both directions because it is not commuta-
tive, while the dihedral angle need only be evaluated once
because it is commutative. The dihedral component of this
equation will be small when the two tangent spaces are not
approximately parallel. At least one of the two monohedral
components will be small when the tangent spaces are
approximately parallel, but have a large gap between them.
Thus, when the product of all three components is large, the
tangent spaces are necessarily aligned, and so Equation 3
provides a useful indication of whether the Euclidean dis-
tance between two points is representative of the geodesic
distance between them, given the estimated tangent spaces,
or whether those points actually lie on separate regions of
a manifold that happens to fold back on itself to create a
misleading proximity between the two points.

a(pi,Si,pj ,Sj , λ) = min(λ,m(pi,Si,pj)2) ∗
min(λ,m(pj ,Sj ,pi)2) ∗
min(λ, d(Si,Sj)2) (3)

Equation 3 uses the squared cosine of these angles angles
instead of just the cosine of these angles because both
positive and negative correlations are equally indicative of
alignment. In order to be tolerant of noise and curvature in
the manifold, we cap the value of all three components with
a threshold, λ, such that all nearly-aligned tangent spaces are
evaluated as being equally good. λ can range from 0 to 1, but
for most problems, suitable values typically range from about
0.85 to 0.95. Smaller values will cause the metric to be more

tolerant of curvature in the manifold, while larger values will
cause the metric to be more careful to avoid connecting two
points from geodesically distant regions of the manifold. As
λ approaches 0, the results from SAFFRON approach those
obtained using Euclidean distance to find neighbors.

Figure 3 gives an intuition for why the product of these
three components provides a good measure of tangent-space
alignment. This figure shows 4 cases. In each case, the
two points are nearly the same distance apart, but their
corresponding tangent spaces are oriented in various ways.
For the purpose of visualization, we enclose each point with
a rectangular region on its corresponding tangent space.
Arrows extending from the point represent a set of basis
vectors that might define this tangent space. In case 1, where
the tangent spaces are aligned, all three values are close to 1.
In each case where the the tangent spaces are misaligned in
some way (cases 2, 3, and 4), at least one of the three values
is close to zero. Thus, the product of these three components
is only close to 1 when the tangent spaces are aligned.

SAFFRON decays the weights of the |Ci| − k candidate
neighbors that are the least aligned with pi. The weight
vector is then normalized to sum to 1. (This effectively shifts
the weight toward the k candidate neighbors with tangent
spaces that are most aligned with pi.)

Step 4 of the SAFFRON algorithm detects convergence.
Convergence can be easily detected because each iteration
increases the alignment scores of the candidate neighbors
with the largest weights. Thus, a goodness score for the
system is given as the sum of the alignment scores scaled by
the weights. When this goodness value no longer increase
significantly, it has converged.

Step 5 forms local neighborhoods of points. This is done
for each point by selecting the k candidate neighbors with
the largest weights.

The last high-level step of SAFFRON is to post-process
the neighborhoods with the CycleCut algorithm [4]. CycleCut
is an algorithm that uses a max-flow/min-cut technique to
detect and prune neighbor connections that shortcut across
the manifold topology. We consider a complete description
of the CycleCut algorithm to be outside the scope of this
paper, but we give a high-level overview of its function here.
Also, for completeness in describing the SAFFRON algo-
rithm, pseudocode for the CycleCut algorithm is included in
Appendix A.

This step may be considered to be optional because
with many problems, SAFFRON can form high-quality
neighborhoods without this last step. The addition of this
step, however, increases the robustness of the SAFFRON
algorithm. SAFFRON relies on several parameter values
(including the number of candidate points q, the number
of neighbors k, the number of tangent-space dimensions t,
and a threshold value, λ). When these values are poorly-
tuned for the problem, or when the data contains a large
amount of noise, SAFFRON may find a small number of
neighbors that still shortcut across the manifold structure.
CycleCut can detect and remove these connections, but it can

only distinguish the shortcuts from valid connections if the
number of shortcut connections is small. Thus, SAFFRON
and CycleCut are designed to complement each other. SAF-
FRON makes it possible for CycleCut to identify shortcut
connections by keeping the number of shortcut connections
small, and CycleCut ensures that the final results will be
free of the large cycles that are created by connections that
shortcut across manifold boundaries.

The remainder of this paper is layed out as follows.
Section II describes related work. Section III describes the
SAFFRON and CycleCut algorithms in detail sufficient to
facilitate implementation. Section IV reports results from
empirical tests to validate the properties of SAFFRON.
Finally, Section V summarizes the contributions of this paper.

II. RELATED WORK

Due to the large number of algorithms that rely on being
able to identify neighboring points, neighbor-finding has
been a topic of interest in machine learning for a long
time. Many distance, similarity, and dis-similarity metrics
have been proposed for this purpose [5], [6], [7], [8], [9].
It has been shown that as dimensionality becomes large, the
distance from a point to its farthest neighbor approaches the
distance to its nearest neighbor [10]. Thus, techniques that
intelligently select neighbors, rather than merely relying on
a distance metric, are particularly important for applications
involving high-dimensional space. In this paper, we focus
on finding neighbors among points that are known to lie on
the surface of an intrinsically low-dimensional manifold in
high-dimensional space.

The idea of using the assumption that data lies on a
manifold to guide the evaluation of distances is not new
[11]. Recently, however, as interest in manifold learning has
increased in machine learning communities, techniques for
estimating distances between points that sample from an
unknown manifold have become of interest. One example
is Ranking on Manifolds [12]. This technique evaluates
distance in a manner that penalizes paths that cross gaps
over unsampled regions of the manifold, and thereby eval-
uates distance in a manner that conforms more closely to
the intrinsic manifold structure. Perhaps the most similar
algorithm to SAFFRON is Adaptive Neighborhood Selection
for Manifold Learning [13]. This technique builds on top
of Ranking on Manifolds by adaptively choosing parameter
values in local neighborhoods. SAFFRON is similar in that
it also adaptively chooses settings in each neighborhood,
but differs in how it determines proximity to the manifold.
SAFFRON uses an approach similar to that used by the
Local Tangent Space Alignment (LTSA) [14] for estimating a
tangent space by computing the first t principal components
in local neighborhoods. Unlike LTSA, however, it without
the assumption that neighbors have already been found, and
it uses the tangent spaces to guide the selection of neighbors
(or friends). This approach enables SAFFRON to find better
local neighborhoods on the surface of sampled manifolds
than existing techniques.

Case 1 Case 2 Case 3 Case 4
m(pi,Si,pj) ≈ 1 ≈ 0 ≈ 0 ≈ 1
m(pj ,Sj ,pi) ≈ 1 ≈ 1 ≈ 0 ≈ 1
d(Si,Sj) ≈ 1 ≈ 0 ≈ 1 ≈ 0
a(pi,Si,pj ,Sj , λ) ≈ λ3 ≈ 0 ≈ 0 ≈ 0

Fig. 3. Four cases are shown with two points separated by a constant distance and their corresponding tangent spaces. Case 1 is the only case where the
tangent spaces of the two points are aligned. The cosine of the monohedral angle is evaluated in both directions because it is not commutative, whereas
the cosine of the dihedral angle is the same in both directions. The tangent spaces of two points are aligned when all three metrics are close to 1. This
property generalizes into arbitrary dimensional space.

III. THE SAFFRON ALGORITHM

Figure 4 gives pseudocode for the SAFFRON algorithm.
The parameters to the algorithm are:

P ≡ set of points on which to operate.
q ≡ median number of candidate points from which to
select friends.
k ≡ number of friends to find for each point. (k < q.)
t ≡ dimensionality of the manifold tangent space.
λ ≡ threshold that determines tolerance to curvature.

Line 1 of the SAFFRON algorithm computes a radius, r,
in which to find candidate friends for each point. Because a
suitable radius is necessarily problem-specific, it is preferable
to parameterize the algorithm in terms of q, the median
number of candidates, and to compute r from q. Lines 2-
5 find a set of candidate friends for each point and assign
uniform weight to each of them. These candidates consiste of
all points within the specified radius of each point. Lines 6,
10, and 20 compute a “goodness” score for the system that
is used in line 21 to dectect convergence. The value of g will
increase with each iteration until the system converges. Lines
7-21 are the main loop of the SAFFRON algorithm. Lines 8-
9 estimate the tangent space of each point by computing the
first t principal components of Ci. Each candidate neighbors
is weighted according to wi when the principal components
are computed. Each row in Si, therefore, will store one of
the t orthonormal basis vectors in the tangent space for
pi. Lines 11-19 update the weights of each point in P.
Line 15 uses Equation 3 to compute an alignment score
for each candidate friend of pi. Line 18 decays the weight
of the candidate friends with the lowest alignment scores.
Our implementation decays these weights by multiplying by
0.9. Obviously other values could be used here, but we have
not been able to detect any significant effect on results by
adjusting this value. If there are multiple candidates with
the same alignment score, the closer points are considered

to be better aligned. Line 19 normalizes wi to sum to one.
Thus, lines 18 and 19 together effectively shift the weight
toward the k-best friends of pi. Line 21 detects convergence.
Our implementation stops when the goodness score increases
by less than 0.01% after one iteration over all of the data
points. Other values could be used to detect convergence,
but we have obtained little perceptible benefit by tuning this
value. Line 22 forms the local neighborhoods by selecting
the k points with the largest weights to be the friends of
each pi. Line 23 performs a post-processing operation on the
neighborhoods called CycleCut, which detects and removes
any shortcut connections that were erroneously found in
previous steps. CycleCut only is only effective at detecting
shortcut connections if the number of shortcut connections
is small, so it is typically not sufficient to just use CycleCut
by itself. Pseudo-code for the CycleCut algorithm is given
in Appendix A.

IV. EXPERIMENTAL ANALYSIS

To show that SAFFRON is effective at forming neigh-
borhoods that do not shortcut across the manifold, even
when the manifold approaches very close to itself, we
sampled 439 points uniformly on an intrinsically one-
dimensional compressed helix manifold defined by the equa-
tions 〈sin(α), 0.005α, cos(α)〉. Figure 5.A shows each point
connected with its four nearest Euclidean-distance neighbors.
If the manifold is considered to be an intrinsically two-
dimensional ring, then the neighbors found by Euclidean
distance correctly represent its topology. Unfortunately, Eu-
clidean distance does not provide a mechanism to specify
the intrinsic dimensionality. With SAFFRON, this is done
by setting the parameter value t. Figure 5.B shows the same
points connected with their 4-best friends, as determined by
SAFFRON with parameters q = 32, k = 4, t = 1, λ = 0.95.

We note that a solution to a compressed helix manifold
using adaptive neighborhood selection was also presented

function SAFFRON(P, q, k, t, λ) Comments
1 set r ← the median distance to the qth neighbor in P. Compute a good radius to use.
2 for each point pi ∈ P:
3 let Ci be the subset of points pj ∈ P, where Find a set of candidate neighbors for each pi.

j 6= i, and ||pj − pi|| < r.
4 let wi be a vector of weights for points in Ci. wij is the weight of cij for pi.
5 set each wij ∈ wi ← 1

|wi| . Initialize each candidate to have uniform weight.
6 g ← 0 g is the increasing “goodness” of the system.
7 loop:
8 for each point pi ∈ P:
9 Si ←estimate tangent space(P, i,Ci,wi, t). Estimate the weighted tangent space at each point.
10 set h← g; g ← 0. These values assist detecting convergence.
11 for each point pi ∈ P:
12 let xi be a vector of alignment scores

for each candidate point in Ci.
13 for each point cij ∈ Ci:
14 let pl be the point in P that is cij .
15 set xij ← a(pi,Si,pl,Sl, λ). Equation 3.
16 set e← |x| − k. e is the number of excess candidates.
17 for each of the e-smallest values xij ∈ xi:
18 set wij ← 0.9 ∗ wij . Decay weight of least-aligned candidates.
19 set wi ← wiP

j wij
. Normalize wi to sum to 1 again.

20 set g ← g + xi ·wi. Update the goodness measure.
21 until g

h − 1 < 0.0001 Terminate when g no longer increases significantly.
22 for each pi ∈ P, choose the k candidate points with the

largest weights to be the friends of pi.
23 Prune any shorcut connections with the See Appendix A.

CycleCut algorithm.

Fig. 4. Pseudo code for finding the k-best friends of each row in P, assuming the points lie on a t-dimensional manifold. r is a radius in which to
find candidate points. λ is a threshold value between 0 and 1 the specifies how well-aligned the tangent-spaces of points must be in order for them to be
considered friends.

Fig. 5. A: Samples at regular intervals are shown on an intrinsically one-
dimensional compressed helix manifold. Each point is shown connected with
its four nearest Euclidean-distance neighbors. These would represent good
local neighborhoods for an intrinsically two-dimensional ring manifold, but
Euclidean distance does not provide a mechanism to specify the intrinsic
dimensionality. B: Each point is shown connected with its four best friends
as determined by SAFFRON with parameters q = 32, k = 4, t = 1,
λ = 0.95.

by [13]. In that case, however, the compressed helix was
compressed only to the point where the nearest neighbors
of each point still included the previous and next points
in the one-dimensional sequence. The compressed helix
manifold for which we report results is a much harder
problem because it is sufficiently compressed that neither
the previous nor next point in the sequence is even among
the four nearest Euclidean-distance neighbors for many of
the points. By aligning tangent spaces, however, SAFFRON
is able to correctly determine which points are most likely
to be neighboring samples on a manifold with the specified
number of intrinsic dimensions. If t is set to 2 instead
of 1, SAFFRON behaves more like Euclidean distance by
choosing neighbors in vertical directions as well as horizontal
directions.

The parameters that we used to solve this problem were
selected intuitively. The value q = 32 was chosen such
that the pool of candidate friends for each point would
be sufficiently large to include the two previous and two
next points in the helix. The value k = 4 was chosen for
the visual appeal of displaying 4 neighbors in Figure 5.A.
The value t = 1 was chosen to indicate that the intended
intrinsic dimensionality of the problem. The value λ = 0.95

Fig. 6. A: Samples at regular intervals are shown on an intrinsically one-
dimensional self-intersecting manifold. Each point is shown connected with
its four nearest Euclidean-distance neighbors. These connections shortcut
across the manifold structure, misrepresenting the manifold topology. NLDR
algorithms that rely on such neighborhoods will not correctly unfold the
manifold. B: Each point is shown connected with its four best friends as
determined by SAFFRON with parameters q = 6, k = 4, t = 1, λ = 0.9.

was chosen to be fairly large in order to prevent neighbors
from shortcutting across the manifold. With these parameters,
SAFFRON made no shortcutting neighbor connections. The
same results were obtained both with and without the final
CycleCut shortcut-pruning step of the SAFFRON algorithm.
When the CycleCut step is included, however, a broader
range of parameter values can be used to still obtain the
same results.

To test SAFFRON with an even more extreme manifold,
we sampled 63 points from an intrinsically one-dimensional
manifold that intersects with itself according to the equations
〈sin(2α), 2 cos(α)〉. Figure 6.A shows each point connected
with its 4-nearest Euclidean-distance neighbors. These con-
nections shortcut across the manifold structure, misrepresent-
ing the manifold topology. If an NLDR algorithm were to
try to unfold this manifold based on these neighborhoods,
the shortcut connections would cause it to produce incorrect
results. By contrast, Figure 6.B shows the same points con-
nected with their 4-best friends as determined by SAFFRON
with parameters q = 6, k = 4, t = 1, λ = 0.9. None
of the neighbor connections found by SAFFRON shortcut
across the manifold topology. SAFFRON is able to determine
that the very close points near the center would make
poor friends because they have very mis-aligned tangent
spaces. To our knowledge, SAFFRON is the first neighbor-
finding technique that can correctly find neighbors on a self-
intersecting manifold. The same results were obtained both

Fig. 7. A: Samples at regular intervals are shown on an intrinsically one-
dimensional self-intersecting manifold. Each point is shown connected with
its four nearest Euclidean-distance neighbors. These connections shortcut
across the manifold structure, misrepresenting the manifold topology. NLDR
algorithms that rely on such neighborhoods will not correctly unfold the
manifold. B: Each point is shown connected with its four best friends as
determined by SAFFRON with parameters q = 6, k = 4, t = 1, λ = 0.9.

with and without the final CycleCut shortcut-pruning step
of the SAFFRON algorithm. When the CycleCut step is
included, however, a broader range of parameter values can
be used to still obtain the same results.

We also created an intrinsically two-dimensional mani-
fold embedded in three-dimensional space according to the
equations 〈sin(2α), 2 cos(α), 2β〉. With this manifold, we
sampled 2000 points using random values for α and β from a
uniform distribution. Figure 7.A shows a plot of these point.
We used SAFFRON to compute local neighborhoods with the
parameters q = 40, k = 18, t = 2, λ = 0.9. We then used
Manifold Sculpting [15] to reduce the dimensionality of these
points to two dimensions, using the local neighborhoods
computed by SAFFRON. Figure 7.B shows a plot of the
data after reducing to two dimensions.

For visual clarity, the points in Figure 7 are colored
according the the value of α. SAFFRON, of course, did
not have access to any information that would enable it to
determine the color of any of the points, or the corresponding
intrinsic values α or β. It can be observed in Figure 7.B
that a small number of purple-colored points were incorrectly
placed among the yellow points, and a small number of yel-
low points were incorrectly placed among the purple point.
This occurs because these points were located very near
to where the manifold intersected itself. As the relaxation

function CycleCut(V,E) Comments
λ← 12 Default atomic cycle length threshold

1. for each {a, b} ∈ E do: Wa,b ← 1 Initialize edge capacities uniformly
R← empty list R stores the edges that are removed
loop: Loop until all large atomic cycles are cut

2. C ← find large atomic cycle(V,E, λ) See Figure 9
if C = null: If there are no large atomic cycles

break Exit the loop. Go to *
3. h← min{a,b}∈C Wa,b Find the bottle-neck in the cycle
4. for each {a, b} ∈ C: For each edge in the cycle

Wa,b ←Wa,b − h Reduce the remaining capacity
5. if Wa,b = 0: If the edge is fully saturated

remove {a, b} from E Cut the edge
append {a, b} → R Remember the removed edges

6. continue Go to the start of the loop
7. for each {a, b} ∈ R: * Repair unnecessary cuts

add {a, b} → E Tentatively restore the edge
C ← find large atomic cycle(V,E, λ) See Figure 9
if C 6= null: If the edge creates a cycle

remove {a, b} from E Remove it again

Fig. 8. Pseudo-code for the CycleCut algorithm. V is a set of vertices. E is a set of edges.

function find large atomic cycle(V,E, λ) Comments
Q← empty queue; S ← empty set; T ← empty set S = visited vertices, T = visited edges
choose a random vertex, v0 from V Pick a random seed point
enqueue v0 → Q; add v0 → S Seed the outer BFS queue
while |Q| > 0: Do the outer breadth-first-search
. dequeue a← Q Visit the next vertex
. for each neighbor b of a: Follow every edge
. if b ∈ S: If a cycle is detected by the outer BFS
. . Pb ← null P = parent vertices
. . I ← empty queue; U ← empty set U = vertices visited by inner BFS
. . enqueue b→ I; add b→ U Seed the inner BFS queue
. . while |I| > 0: Do the inner breadth-first-search
. . dequeue c← I Visit the next vertex
. . for each neighbor d of c: Follow every edge
. . if d /∈ U and Ec,d ∈ T : Inner BFS does not explore new paths
. . Pd ← c Store the parent of every vertex
. . enqueue d→ I; add d→ U Advance the inner BFS
. . if d = a: If an atomic cycle is found
. . Y ← empty list Y = list of vertices in the atomic cycle
. . while d 6= null: Build the list of vertices
. . . append d→ Y Add to the list
. . . d← Pd Advance to parent vertex
. . if |Y | ≥ λ then return Y Return the large atomic cycle
. . else break twice Exit inner BFS. Go to * (3 lines below)
. else If b has not been visited before
. . enqueue b→ Q; add b→ S Advance the outer BFS
. add Ea,b → T * Flag this edge as visited
return null There are no large atomic cycles

Fig. 9. Pseudo-code to find an atomic cycle with a cycle length ≥ λ edges in a graph comprised of vertices V , and undirected edges E.

process used by SAFFRON proceeds, the tangent spaces at
each point align themselves with their neighbors. With these
points, the correct alignment could not be unambiguously
determined. As these points began to align with one side,
they also simultaneously disassociated themselves with the
other side, and therefore became entirely embedded into just
one location of the graph. A less-intelligent neighbor-finding
technique might leave these points connected to both regions
of the manifold. This would create a graph that an NLDR
algorithm would not be able to unfold because the shortcut
connections would bind geodesically distant regions of the
manifold close together.

V. CONCLUSION

We presented an intelligent neighbor-finding algorithm
called SAFFRON, which uses a relaxation technique to
select neighbors such that the tangent spaces represented in
local neighborhoods will be aligned. This technique enables
neighbors to be found that are robust against shortcutting
across manifold structure. Because so many important tech-
niques used in machine learning rely on graphs formed by
connecting neighboring points, SAFFRON has significant
potential to improve the analysis of data that lies on a low-
dimensional manifold in high-dimensional space.

The contributions of this paper include: a method for
measuring the dihedral angle between two flats with a
codimension greater than 1, a method for evaluating the
alignment of two tangent spaces by computing the product of
the dihedral and monohedral angles, and most significantly,
a relaxation technique for determining which points are best-
suited to be neighbors, without shortcutting across a manifold
structure.

VI. APPENDIX A

This appendix provides details necessary to implement
the last step of the SAFFRON algorithm, which detects
and removes shortcut connections with an algorithm called
CycleCut [4]. We consider a detailed description of the
CycleCut algorithm to be outside the scope of this paper, but
we briefly describe its purpose, and we provide pseudocode
(see Figure 8) so that this paper will contain all the infor-
mation necessary to facilitate a complete implementation of
SAFFRON.

By definition, a shortcut connection is a neighbor paring
between points in geodesically distant regions of a manifold.
Shortcut connections necessarily create a large hole in the
neighborhood graph. The CycleCut algorithm uses a max-
flow/min-cut technique to detect large holes in a graph, and
to make a minimal set of cuts to remove them from the graph.
In cases where only a small number of shortcut connections
exist, CycleCut will detect and remove shortcut connections.
Although with many problems SAFFRON is able to construct
good neighborhoods that contain no shortcut connections, the
addition of CycleCut as a final step to SAFFRON adds extra
robustness, such that SAFFRON can be used to handle even
more difficult problems.

REFERENCES

[1] M. Balasubramanian and E. L. Schwartz, “The isomap algorithm and
topological stability,” Science, vol. 295 (5552), 7a, January 2002.

[2] C. Varini, A. Degenhard, and T. W. Nattkemper, “Isolle: LLE with
geodesic distance,” Neurocomputing, vol. 69, no. 13-15, pp. 1768 –
1771, 2006.

[3] E. Levina and P. J. Bickel, “Maximum likelihood estimation of
intrinsic dimension,” in Advances in Neural Information Processing
Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge,
MA: MIT Press, 2005, pp. 777–784.

[4] M. Gashler and T. Martinez, “Robust manifold learning with cyclecut,”
in Submission, 2011.

[5] P. Mahalanobis, “On the generalized distance in statistics,” in Pro-
ceedings of the National Institute of Science, Calcutta, vol. 12, 1936,
p. 49.

[6] K. Menger, “Statistical metrics,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 28, no. 12, p. 535,
1942.

[7] S. Stigler, “Francis Galton’s account of the invention of correlation,”
Statistical Science, vol. 4, no. 2, pp. 73–79, 1989.

[8] E. Diday, “Recent progress in distance and similarity measures in
pattern recognition,” in Second International Joint Conference on
Pattern Recognition, 1974, pp. 534–539.

[9] D. R. Wilson and T. R. Martinez, “Improved heterogeneous distance
functions,” Journal of Artificial Intelligence Research (JAIR), vol. 1,
pp. 1–34, 1997.

[10] K. B. Jonathan, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
“nearest neighbor” meaningful?” in In Int. Conf. on Database Theory,
1999, pp. 217–235.

[11] K. Nomizu and H. Ozeki, “The existence of complete Riemannian
metrics,” Proceedings of the American Mathematical Society, vol. 12,
no. 6, pp. 889–891, 1961.

[12] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schölkopf,
“Ranking on data manifolds,” in Advances in Neural Information
Processing Systems 16. MIT Press, 2004.

[13] J. Wei, H. Peng, Y.-S. Lin, Z.-M. Huang, and J.-B. Wang, “Adaptive
neighborhood selection for manifold learning,” in Machine Learning
and Cybernetics, 2008 International Conference on, vol. 1, July 2008,
pp. 380–384.

[14] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimension
reduction via local tangent space alignment,” SIAM Journal of Scien-
tific Computing, vol. 26, pp. 313–338, 2002.

[15] M. Gashler, D. Ventura, and T. Martinez, “Iterative non-linear dimen-
sionality reduction with manifold sculpting,” in Advances in Neural
Information Processing Systems 20. Cambridge, MA: MIT Press,
2008.

