
Temporal Nonlinear Dimensionality Reduction

Mike Gashler and Tony Martinez

Abstract— Existing Nonlinear dimensionality reduction
(NLDR) algorithms make the assumption that distances
between observations are uniformly scaled. Unfortunately,
with many interesting systems, this assumption does not
hold. We present a new technique called Temporal NLDR
(TNLDR), which is specifically designed for analyzing the
high-dimensional observations obtained from random-walks
with dynamical systems that have external controls. It uses
the additional information implicit in ordered sequences
of observations to compensate for non-uniform scaling in
observation space. We demonstrate that TNLDR computes
more accurate estimates of intrinsic state than regular NLDR,
and we show that accurate estimates of state can be used to
train accurate models of dynamical systems.

I. INTRODUCTION

Nonlinear dimensionality reduction (NLDR) algorithms
operate on an unordered set of high-dimensional observation
vectors, Y = 〈y1,y2, ...,yn〉. They compute a corresponding
set of low-dimensional vectors, X = 〈x1,x2, ...,xn〉, such
that each xi is a low-dimensional representation of yi. xi

may be thought of as a representation of the intrinsic values,
or state, from which the corresponding observation yi was
derived.

In order to compute X, most NLDR algorithms make the
assumption that the pair-wise distances between neighboring
points in Y will be approximately proportional to the cor-
responding pair-wise distances in X. We refer to this as the
assumption of proportional distances. Unfortunately, in many
interesting cases, this assumption does not hold. For example,
consider a robot which uses a camera to navigate within a
building. Each yt ∈ Y is a high-dimensional vector of pixel
values obtained from the robot’s camera. When the robot
moves, the amount of change in the observation is not only
affected by the amount of movement, but also by the distance
between the camera and the objects that are in view. Further,
the color and texture patterns of the objects in view may
cause observational changes to be scaled higher or lower,
independent of the actual change in state. Partial occlusions
may further exacerbate this problem. Because the assumption
of proportional distances does not hold in many real-world
systems, traditional NLDR algorithms are not suitable for
estimating the intrinsic state of these systems.

We present a new technique called Temporal NLDR
(TNLDR), which utilizes the additional information found in
sequences of observations to perform nonlinear dimensional-
ity reduction without making the assumption of proportional
distances. We show that TNLDR is effective at estimating

Mike Gashler and Tony Martinez are with the Department of Computer
Science, Brigham Young University, Provo, Utah, U.S.A. (email: {mike,
martinez}@axon.cs.byu.edu).

+1xt
at

+1yt
xt

f g

Fig. 1. A model of a dynamical system. f is the transition function of the
system. g is the observation function. t specifies a time-step. a is an action
vector, which may be discrete or continuous. x is a vector of continuous
values that represent state. y is a high-dimensional observation vector.

the intrinsic state of systems from high-dimensional obser-
vations, where traditional NLDR algorithms fail. We also
demonstrate that an accurate estimate of intrinsic system state
is useful for training a model of the system, a process also
know as nonlinear black-box system identification.

TNLDR operates using more information than regular
NLDR. TNLDR assumes that Y is an ordered sequence of
observations occurring at regular time intervals. Additionally,
a sequence of actions, A = 〈a1,a2, ...,an〉, is given to
specify the control inputs given to influence the dynamical
system. By using this additional information, TNLDR is
able to compute pair-wise distances between observations
in a manner that is independant of the local scaling of
observations, and then use existing methods to estimate
system state.

TNLDR is designed to reduce the dimensionality of the
output of dynamical systems. A general model of a dynam-
ical system is given in Figure 1. At any given time, t, the
output, yt, can be observed to provide information about
the system. We assume that yt is a high-dimensional vector
of continuous values. yt is not directly a function of the
current input at. Rather, yt is a function of the hidden
state, xt, which may be considered to be an aggregation
of the initial state, x0, and all of the inputs, or actions,
that were previously applied to the system, 〈a0,a1, ...,at−1〉.
Actions may be continuous or discrete. At each time-step,
the system transitions to a new state, which is determined
by the current state and the action which is applied to
the system. Thus, traditional supervised learning algorithms,
which assume the output is a direct function of the input, are
not sufficient for modeling dynamical systems. Dynamical
systems can be challenging to model because the sequence
of states, X = 〈x0,x1, ...,xn−1〉, is not directly observable.
TNLDR, however, can greatly simplify the task of modeling
a dynamical system by estimating a sequence of states, X,
that corresponds with the sequence of actions, A, applied
to the system, and the sequence of observations, Y, that
come out from the system. Thus, TNLDR estimates X, from
{A,Y}. In the robot example, if A is a sequence of n actions
from the set {turn left, turn right, move forward, back up},
and Y is the video of n frames from the robot’s camera, then

TNLDR might use this information to estimate a sequence
of vectors that represent the position and orientation of the
robot at each of the n time-steps.

In order for TNLDR to compensate for non-uniform
local scaling in observation space, it needs a mechanism to
estimate how distances are scaled at each position. Therefore,
a regression model, h, is trained with each 〈yt,at〉 →
(yt+1 − yt), where t < n. h gives an estimate of how the
observation vector will change when a particular action is
applied at any position in observation space. The magnitude
of this predicted change corresponds with the local scaling
of observations. Typically, NLDR algorithms compute the
pair-wise distance between two observations, yi and yj ,
as ||yj − yi||. This approach is simple, but it does not
compensate for local scaling. TNLDR computes this distance
by finding the most direct path of actions from yi to yj ,
using h to estimate the effect of each candidate action at
every step along the path. The distance between yi and
yj is the number of actions in the path, or the number
of time-steps that separate the two observations. This time-
based distance metric is better-suited for analyzing the high-
dimensional observations from dynamical systems because it
is independent of the factors that cause observations to be
scaled disproportionately with state. TNLDR uses this time-
based distance metric to choose local neighborhoods, and to
compute the pair-wise distances, D, between them, where
each dij ∈ D is the time-based distance between yi and yj .
TNLDR then uses a regular NLDR to compute X from D.
TNLDR may be summarized at a high-level as:

1. Train a regression model, h, with each 〈yt,at〉 →
(yt+1 − yt), where t < n− 1.

2. Use h to identify neighboring observations, and
to compute the pair-wise distances, D, between
neighboring observations.

3. Use a regular NLDR algorithm to compute X
from D.

TNLDR is designed to analyze high-dimensional obser-
vations from dynamical systems. This may be useful, for
example, because it will enable a system to be monitored
using a general-purpose optical camera, which produces
high-dimensional information, instead of problem-specific
sensory devices.

We report results from several experiments that demon-
strate the effectiveness of TNLDR. We compare TNLDR
with existing NLDR algorithms, and show that TNLDR
obtains better results. We also show that TNLDR can be
used to facilitate the training of models of dynamical systems
that have external controls. We compare models trained by
TNLDR with those trained using conventional methods and
show that the models trained with TNLDR are more accurate.
We show that TNLDR enables other regression models,
besides neural networks, to be used in a recurrent manner
for modeling dynamical systems. We also demonstrate that
a model trained with TNLDR is sufficiently accurate to
facilitate planning in isolation from the system.

This paper is laid out as follows. In Section II we give

an overview of related work. In Section III we describe
TNLDR in detail. Section IV reports analysis and validation
of TNLDR and the related SEIT method. Finally, Section V
summarizes the contributions of this paper.

II. RELATED WORK

Many works have been presented in the last decade
related to NLDR [1], [2], [3], [4], [5], [6], [7], [8]. In our
experiments, we use Isomap [1] and Breadth-first Unfolding
with TNLDR, although other NLDR algorithms are suitable
as well. The primary focus of TNLDR is for analyzing high-
dimensional nonlinear observations from dynamical systems,
especially when an estimate of state is required. The notion
of using dimensionality reduction to estimate state has been
used previously, particularly for the application of robot
tracking [9], [10], [11], [12], [13]. To our knowledge, how-
ever, no dimensionality reduction technique has yet tried to
specifically make use of the additional information that is
found in sequences of observations.

In order to demonstrate the effectiveness of TNLDR,
we use TNLDR to train models of dynamical systems.
Most work to date related to modeling nonlinear dynamical
systems involves recurrent neural networks. Existing methods
for training the weights of recurrent neural networks can
be broadly divided into two categories: Those based on
nonlinear global optimization techniques, and those based on
descending a local error gradient. Perhaps the most common
nonlinear global optimization technique for training recurrent
neural networks is evolutionary optimization [14], [15], [16].
Unfortunately, in practice, evolutionary optimization tends
to be extremely slow, and it is unable to yield good results
with many difficult problems [17], [15]. Evolutionary op-
timizers are particularly susceptible to problems where an
error surface exhibits narrow channels. The optimizer will
typically become stalled as it waits to find a lucky vector that
falls within the narrow region of improved vectors. Gradient-
based methods that converge to a local optimum offer much
faster convergence than optimization techniques that seek the
global optimum. Perhaps the most popular of the gradient-
based techniques for recurrent networks is Backpropagation
Through Time (BPTT) [18]. Another common gradient-
based method is Real-Time Recurrent Learning (RTRL) [19].
Although gradient-based methods converge faster than global
optimization methods, they are susceptible to problems with
local optima. With feed-forward neural networks, local op-
tima is often considered to be an insignificant problem since
many local optima occur near relatively good regions of
the weight space. With recurrent neural networks, however,
local optima is a much more significant problem [20]. The
feedback which comes through the recurrent connections
can create fluctuating and chaotic responses in the error
surface, causing local optima to occur both frequently and in
poor locations of the weight space. By contrast, the NLDR
component of TNLDR is designed specifically for estimating
intrinsic state without being subject to problems with local
optima. We show that this naturally leads to better models
than can be obtained using BPTT and other methods.

TNLDR may be loosely comparable with the extended
Kalman filter (EKF), since both are used to estimate the
hidden state of a system. The EKF, however, utilizes a non-
linear model of system dynamics, provided by the user, to
estimate state. By contrast, TNLDR estimates state without
requiring a model of the system to be supplied. Thus, the
state estimated by TNLDR may be used to train a non-linear
model of system dynamics.

III. THE TNLDR ALGORITHM

TNLDR is described in pseudo-code in Figure 2. We now
describe each step in the algorithm.

Step 1: The first step of TNLDR is to train a supervised
learning regression algorithm, h, with each 〈yt,at〉 →
(yt+1 − yt), where t < n − 1. In our implementation, we
use a 1-nearest-neighbor model for h, but other algorithms
may be suitable as well.

Step 2: A path of actions, p(i, j), is estimated from
each yi to yj , where j 6= i, j < n, and i < n. In
our implementation, we use the simple greedy approach
described with pseudo-code in Figure 3 to find this path,
but other path search algorithms may be suitable as well.
Our simple greedy path search constructs a set, B, of all the
unique actions in A. At each step, it removes all actions
from B that are not positively correlated with the remaining
difference in observations. This ensures that it does not find
paths that spiral inward or overshoot and then backtrack. It
always chooses the action that is most positively correlated
with the remaining difference, which is not necessarily the
action that advances closest to the goal. This approach is
more robust when it is not known how the axes are locally
scaled with respect to each other in observation space. It
will take at most one step before recomputing the predicted
change in observations. Fractional steps are permitted when
it is less than one time-step away from the goal.

The path returned by this greedy algorithm is a vector of
the number of times that each action is performed on the
estimated most-direct path from yi to yj . This is a lossy
representation of the path in that it does not represent the
order in which the actions are performed. That information
is not needed hereafter, so this is a sufficient representation.

Because this is a greedy technique, it is possible that the
search for a path from yi to yj may become stuck in a local
optimum. This condition is detected if more than a ratio of λ
of the gap between yi to yj is unexplained by the estimated
path. When this occurs, the path is rejected as an invalid
estimate, and yj is determined to not be a neighbor of yi.
If the observation manifold exhibits local linearity, which is
typically assumed, then short paths will not encounter local
optima. Since long paths will be rejected anyway, there is
little (if any) value in fine-tuning the value of λ. The only
significant case when this check has any effect is when a very
distant point begins close to a local optimum. In such cases,
the estimated path length will be close to zero, and nearly
all of the distance between yi to yj will remain unexplained
by the path. Thus, a wide range of values for λ yields nearly
identical results. We use λ = 0.2 in all of our experiments.

Typically NLDR uses one of two common techniques
for determining local neighborhoods. The most common
technique is to compute the k-nearest Euclidean distance
neighbors of every yt ∈ Y. A less-popular technique is
to choose all points that fall within a distance of ε to be
neighbors. This approach is less popular because it requires
a problem-specific value for ε. A good value can be difficult
to determine since distances in observation space depend on
the nature of the observations. Since TNLDR uses a problem-
independent time-based distance metric, however, it is pos-
sible to intuitively select a value for ε that will be suitable
with many different problems. Each yj is determined to be
a neighbor of yi if ||p(i, j)|| ≤ ε. In our implementation,
we use the value ε = 2. Intuitively, this means that some
observation is determined to be a neighbor of the current
observation if it can be reached by performing two or fewer
actions. This creates a local neighborhood size that is suitable
for most problems, and is robust even when some regions
of the context space are sampled more heavily than others,
which is typical with random walks.

If the actions are continuous, then ||p(i, j)|| is computed as
the length of the path, or Manhattan magnitude. If the actions
are discrete, then ||p(i, j)|| is the Euclidean magnitude of
p(i, j). It is computed this way because the NLDR algorithm
used in the next step will assume a continuous space while
computing the context embedding, and will seek to preserve
the Euclidean distance between points.

Step 3: X is computed by using an NLDR algorithm
with the table of normalized neighbor distances, D. Some
NLDR algorithms that inherently support custom distance
metrics include: Isomap [1], Local Multidimensional Scal-
ing [7], and Breadth-first Unfolding . Some other existing
NLDR algorithms compute distances internally, usually using
Euclidean distance, and do not explicitly support custom
distance metrics. These NLDR algorithms may need to be
modified somewhat to be suitable for use with TNLDR.

IV. EXPERIMENTAL VALIDATION

This section reports results from experiments designed to
validate the utility of TNLDR. Section IV-A compares the
state estimates of TNLDR with those of the corresponding
NLDR algorithms. Section IV-B demonstrates the use of
TNLDR to build a more accurate model of a dynamical
systems than existing methods. Section IV-C demonstrates
that TNLDR can be used to build models of dynamical sys-
tems using recurrent versions of arbitrary regression models.
Section IV-D demonstrates that a model trained by TNLDR
is sufficiently accurate to facilitate planning.

A. State Estimation

We used a simulated system involving a virtual crane with
a boom and a ball that hangs from a cable. There were 4
actions associated with this system: {rotate right (yaw-wise),
rotate left, extend the length of the cable, shorten the cable}.
A ray-tracer was used to generate 64 × 48 pixel 3-channel
observation images of this system, such that each observation
was a 9216-dimensional vector. We generated a sequence of

function TNLDR(Y,A)
Let n = |Y| = |A| = the length of time represented in the training data.
Let D be a neighbor-distance table, where each dij ∈ D represents the

distance between neighboring observations yi and yj .
ε← 2

1. Train a regression model, h, with each 〈yt,at〉 → (yt+1 − yt), where t < n− 1.
2. for each yi ∈ Y:

for each yj ∈ Y, j 6= i:
p(i, j)←FindPath(yi,yj), where FindPath is defined in Figure 3
if ||p(i, j)|| < ε then dij = ||p(i, j)|| else yj is not a neighbor of yi

3. Use an NLDR algorithm to compute a sequence of context vectors, X, from D.

Fig. 2. Pseudo-code for TNLDR.

function FindPath(yi,yj) Comments
r ← ||yj − yi|| Measure the initial residual
B ← the set of unique actions in A Make a set of candidate actions
p(i, j)← 0|B| Start with empty path
while |B| > 0 : While there are useful actions

for each b ∈ B: Prune counter-productive actions
if h(yi,b) · (yj − yi) ≤ 0 If b is not positively correlated

remove b from B Do not try action b again
if |B| > 0 : If there are still useful actions

a← argmaxb∈B
h(yi,b)
||h(yi,b)|| · (yj − yi) Find the best-correlated action

s← min(1, h(yi,a)·(yj−yi)
||yj−yi||2) Compute fractional action

yi ← yi + s ∗ h(yi,a) Step closer to yj

pa(i, j)← pa(i, j) + s Update the count for action a
if ||yj − yi|| < λ ∗ r then return p(i, j) else return null Reject very poor estimates

Fig. 3. Pseudo-code for a greedy algorithm that estimates p(i, j), where pa(i, j) is the number of times that action a is performed on the estimated
most-direct path from yi to yj . (Fractional counts are permitted.) The value λ = 0.2 is suitable in almost all cases.

4000 random actions, A, and applied them to this system to
obtain the corresponding 4000 observation images, Y

Figure 4A shows the result of using principal component
analysis, a linear dimensionality reduction technique, to
reduce Y into two dimensions. This visualization shows that
the actions have a non-uniform impact on the observations.
In most cases, changing the yaw angle of the crane has
a large impact on the system in observation space, while
changing the length of the cable has a relatively small impact
in observation space. This is manifest in the formation of
small string-like clusters in the PCA plot. Each “string”
is composed of observations with the same yaw-angle, but
different cable lengths. Effective neighbor-finding is difficult
in this space for two reasons: First, Euclidean-distance will
tend to pick only neighbors with the same yaw-angle, since
the cable-length has a lesser impact on observations. Second,
the random walk samples the space non-uniformly. In order
to facilitate NLDR, local neighborhoods must be transitively
connected across the entire manifold, but in order to achieve
this using Euclidean-distance, the neighborhoods must be so
large that undesirable topological structures will be repre-
sented in the neighborhoods.

Figure 4B shows these observations reduced using Isomap
with neighborhoods of size 48. The large number of neigh-

bors was necessary to produce transitive connectivity. Fig-
ure 4C shows results with Breadth-first Unfolding (BFU)
with neighborhoods of size 48. For comparison, Figure 4D
shows the actual hidden state of the system. Figure 4E shows
results with TNLDR using Isomap. Figure 4F shows results
with TNLDR using BFU. TNLDR improved the results from
both algorithms. When better distances go into an NLDR
algorithm, better state estimates comes out.

B. Modeling Dynamical Systems

Perhaps the best way to demonstrate the utility of TNLDR
is to demonstrate its use in training a model of a dynamical
system. This is done with a simple method that we call State
Estimate Induced Training (SEIT). The steps of SEIT are:

1. Use TNLDR to compute X from {Y,A}.
2. Train a regression model, f , with each 〈at,xt〉 →
xt+1, where t < n− 1.

3. Train a regression model, g, with each xt → yt,
where t < n.

4. Return 〈x0, f, g〉. (Note that x0 ∈ X.)
SEIT uses TNLDR to divide the recurrent model shown in

Figure 1 into two simpler parts, f and g, which may each be
trained as a static model. SEIT computes a model of a dy-
namical system, 〈x0, f, g〉, where x0 is the initial estimate of

Fig. 4. A) A PCA projection of Y into 2 dimensions. B) An Isomap projection of Y. C) A Breadth-first Unfolding projection of Y. D) The actual hidden
states visited by the random walk. E) A TNLDR projection of Y using Isomap. F) A TNLDR projection of Y using Breadth-first Unfolding. TNLDR
estimates the state of dynamical systems better than regular NLDR algorithms.

f g (,)u +1xtg
u

+1xtxt

at

Fig. 5. High-dimensional observations may be parameterized with a vector,
u, such that the model predicts only the portion of yt+1 specified by u.
For example, if yt+1 is an image, then g(u,xt+1) could be a prediction
of the three channel values (red, green, and blue) of pixel u in that image.

state, f is a transition function which specifies how the state
changes at each time-step, and g is an observation function
which specifies the relationship between observations and
state. If f and g are both modeled with feed-forward neural
networks, then the model as a whole is an Elman recurrent
neural network. SEIT provides a convenient mechanism for
validating the effectiveness of TNLDR, because it may be
compared empirically with existing methods for training
Elman recurrent neural networks, such as Backpropagation
Through Time (BPTT), evolutionary optimization, simulated
annealing, etc.

In contrast with BPTT, SEIT has several advantages. BPTT
must simultaneously train f and g so that these two functions
will learn to cooperate. This makes it highly susceptible to
problems with local optima. Also, BPTT it is not suitable
for training some models, such as support vector machines
or regression trees. By contrast, SEIT determines how f
and g should cooperate before their training begins, and
encodes this information in X. Thus, f and g can be trained
independently, and they are trained against a stationary target.
The NLDR component of TNLDR naturally avoids local
optima in the representation of X. Further, SEIT can be used
to train arbitrary regression models to operate in a recurrent
manner.

We trained a model of the crane system, 〈x0, f, g〉, using
SEIT. We modeled f using a feed-forward neural network
with 6 inputs (4 to represent the actions, and 2 from recurrent
connections), one hidden layer of 4 sigmoid units, and 2
output units. We modeled g using a feed-forward neural
network with 4 inputs (2 from f , and 2 to parameterize the
image pixel as shown in Figure 5), and two hidden layers.
The first hidden layer (in feed-forward order) contained 15
units, and the second hidden layer contained 30 units. g had 3
output units (for the three color channels). Together, f and g
form a recurrent neural network with 668 weights. We tested
five algorithms for training this network from {Y,A}. At
120-second intervals during training, we measured the root-
mean-squared predictive accuracy of each model, averaged
over 5 validation sequences, each of consisting of 40 random
actions and the corresponding observations. Figure 6 shows a
comparison of the results obtained by each algorithm. SEIT
required almost 500 seconds to compute X using TNLDR,
and to train f . Results for SEIT are only shown during
the training of g. (With SEIT, f and g could be trained
in parallel, but we did not utilize this advantage in this
experiment.) Three of the algorithms all arrived at the poor
solution of always predicting a completely white image.
With this problem, there is a broad locally-convex region
around this solution because the significant majority of the
pixels in the true observation associated with every state
is white. It may be that the evolutionary optimizer would
eventually find its way out of this local optimum, but even
if it does, this is a very inefficient solution. We ran that
algorithm for 7 additional hours, but it did not manage to
break out in that time. Backpropagation Through Time was
the closest competitor with SEIT. Unfortunately, it appears
to have quickly found a local optimum from which it never
managed to escape. SEIT produced the best results by a

SEITBPTT

Annealing

Hill climber
Evolutionary opt.

Training time (in seconds)

R
o
ot
 m
ea
n
 s
q
u
ar
ed
 e
rr
o
r

Fig. 6. Predictive error averaged over 5 unique validation sequences, each
with 40 actions and observations, was measured at 120 second intervals
during training with 5 algorithms. Three algorithms converged to always
predict a blank image. BPTT did better. SEIT gave the best results.
Approximately the first 500 seconds were required to compute X and to
train the transition function, so results are shown for SEIT during training
of the observation function.

State X

Fig. 7. A comparison of the true hidden state from the noisy crane system,
and the estimate of state, X, computed by the first three steps of SEIT.
To assist a visual comparison of the structure, each point is shown with a
spectrum color according to its position in the sequence, and lines are also
shown to indicate transitions.

significant margin.
Next, we modified the crane system to add random noise

to each hidden state variable at every transition. The noise
was drawn from a Normal distribution with a deviation equal
to 5% of the magnitude of the change in state. Random
noise was also added to all three channels of every pixel in
the observation. This noise was also drawn from a Normal
distribution with a deviation equal to 5% of the supported
range in channel values. Figure 7(left) shows a plot of the
actual hidden state of the system, and Figure 7(right) shows
X as estimated by TNLDR using Breadth-first Unfolding.
Despite the noise in observations, TNLDR was still able to
estimate a good representation of the system state. We note
that for training a model of the system, X does not need to
be strictly equivalent to the hidden state, as long as f and g
are able to compensate for differences.

Figure 8 shows a comparison of the actual observations
from the noisy system, with predictions from SEIT and
BPTT, over a test sequence of 200 random actions. The
observation sequence was predicted from only the test ac-

Fig. 10. A robot’s observations were simulated using a sliding and scaling
window over an image of a warehouse.

Fig. 11. Left: A plot of the hidden states through which the warehouse
system passed while generating the training observations. Right: A plot of
X as computed by the first step of SEIT. Color is used to indicate the
position of points in the ordered sequence.

tions, without any feedback from the system. SEIT predicted
each frame clearly, while BPTT made blurry and ambiguous
predictions. With BPTT, the interplay between f and g
during training caused the internal state estimate to fall into a
local optima. By contrast, SEIT did a better job of directing
how f and g should mutually behave by computing X.

C. Decision Tree Model

In order to demonstrate that TNLDR enables the training
of a recurrent version of arbitrary regression models, not just
recurrent neural networks, we trained a decision tree to model
both f and g. Figure 9 shows a comparison of actual and
predicted observations with this model. Existing methods for
training recurrent neural networks, such as BPTT, are not
able to train models based on decision trees.

D. Path Planning

We created another system using the image of a warehouse
shown in Figure 10. The observations for this system were
taken from a small window within this larger image. The
system was equipped with 4 actions, where two of the actions
slide the window left or right, and the other two actions zoom
in or out by changing the size of the window. The window is
capable of having a continuous position and size, so we used
linear interpolation to generate a 64 × 48 pixel observation
image that spans the windowed region of the larger image.
The observations of this system were designed to be similar
to those of a robot that navigates within a warehouse. As with
the noisy crane system, we added Gaussian noise to both the
transitions and observations, with the same deviations used
in that system.

Additionally, we blocked the system from being able
to enter a square region of its state space. A robot, for
example, may be blocked by a large object from entering

=0t =10t =20t =50t =100t =150t =200t

Actual

SEIT

BPTT

Fig. 8. Samples of actual and predicted observations for a test sequence of actions, unrelated to A. Predictions were made by the recurrent models from
the test actions, without any feedback from the system. SEIT made accurate and clear predictions, while BPTT made blurry predictions.

Actual

SEIT

=0t =10t =20t =50t =100t =150t =200t

Fig. 9. Sample predictions from a model using decision trees for f and g. Existing algorithms are only suitable for training recurrent neural networks.
SEIT can train arbitrary recurrent models.

certain regions of its state space. Such a robot may need to
learn to model its environment even though it is unable to
obtain observations from those regions of its state space. We
generated a new training sequence of 4000 random actions,
and obtained a corresponding sequence of observations from
this warehouse system. Figure 11 shows a comparison of the
actual hidden state produced by this system, and the estimate
of state computed by the first step of SEIT.

We modeled this system with a recurrent neural network,
where f had one hidden layer of 4 units, and two context
units, and g had two hidden layers. The first hidden layer in
feed-forward order had 20 units, and the second hidden layer
had 100 units. We used more units in g with the warehouse
system because its observations contained more detail than
the crane system.

Figure 12 shows a comparison of results with this problem
using several training algorithms. Accuracy was measured
by averaging over 5 validation sequences of 40 actions and
observations containing both observation noise and transition
noise. The transition noise has a particularly significant
impact on predictions because it accumulates in the state
over time, while the observation noise affects only the current
observation. Even under these conditions, SEIT was able to
give the best results of any of the algorithms, using either
Isomap or Breadth-first Unfolding.

Next, using only the trained neural network model to
predict observations, a human oracle selected a sequence of

BPTT

Hill climber

Evolutionary opt.

Annealing

Training time (in seconds)

R
oo

t m
ea

n
sq

ua
re

d
 e

rr
or

SEIT

Fig. 12. Predictive error with validation data was measured at 120 second
intervals during training with several algorithms. SEIT gave the best results.
The choice of NLDR algorithm used with SEIT made little difference.

actions that would cause the simulated robot to visit certain
locations within its environment. The intrinsic states in this
planned path are shown superimposed over a plot of X in
Figure 13(left). We then executed the planned sequence of
actions with the actual system. Figure 13(right) shows the
actual hidden state values through which the system passed
as it followed the sequence of actions, superimposed over
the actual state values that correspond with the training

Fig. 13. Left: A path of planned context values chosen by a human based
on predicted observations from the neural network model of the warehouse
system. Right: The path of actual state values through which the system
passed when the planned actions were applied to the system.

Fig. 14. Top: Predicted observations from a planned path made using only
a model of the warehouse system. Bottom: The actual observations made
when the planned path was executed with the warehouse system.

observations that were originally used to train the model.
Figure 14(top) shows predicted observations at five points
along the planned path. Figure 14(bottom) shows the actual
observations at those points when the plan was executed on
the system. This experiment demonstrates that the trained
model represented the system with sufficient accuracy that it
could facilitate planning in isolation from the system.

V. CONCLUSIONS

We presented a new technique called TNLDR, which
reduces the dimensionality of observations from a dynamical
system to recover an estimate of the system state. Compared
with regular NLDR, TNLDR uses the additional information
found in sequences of observations to remove the assumption
that distances in state space are proportional to distances
in observation space. Because TNLDR removes this as-
sumption, it can compute accurate estimates of state, even
when various factors cause observations to be scaled non-
uniformly. TNLDR has significant potential to lead to further
innovations because it extends existing NLDR techniques
to make them suitable for use in estimating the state of
dynamical systems from high-dimensional observations.

We used a simulated crane system to demonstrate that
TNLDR recovers better estimates of state than existing
NLDR techniques. We also demonstrated that TNLDR leads
to a natural method for training models of dynamical sys-
tems, called SEIT. We showed that SEIT does a better job
training a recurrent neural network to model the crane system
than existing methods for training recurrent neural networks.
We also repeated this experiment using a system involving
a simulated robot in a warehouse. We showed that SEIT

is suitable for training other recurrent models besides neural
networks. We also demonstrated that models trained by SEIT
are sufficiently accurate to facilitate planning.

REFERENCES

[1] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
pp. 2319–2323, 2000.

[2] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, pp. 2323–2326, 2000.

[3] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimension
reduction via local tangent space alignment,” SIAM Journal of Scien-
tific Computing, vol. 26, pp. 313–338, 2002.

[4] D. Donoho and C. Grimes, “Hessian eigenmaps: locally linear embed-
ding techniques for high dimensional data,” Proceedings of National
Academy of Sciences, vol. 100, no. 10, pp. 5591–5596, 2003.

[5] K. Q. Weinberger, F. Sha, and L. K. Saul, “Learning a kernel matrix
for nonlinear dimensionality reduction,” in ICML ’04: Proceedings
of the Twenty-First International Conference on Machine Learning.
New York, NY, USA: ACM Press, 2004. [Online]. Available:
http://dx.doi.org/10.1145/1015330.1015345

[6] E. Levina and P. J. Bickel, “Maximum likelihood estimation of
intrinsic dimension,” in Advances in Neural Information Processing
Systems 17, L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge,
MA: MIT Press, 2005, pp. 777–784.

[7] J. Venna and S. Kaski, “Local multidimensional scaling,” Neural
Networks, vol. 19, no. 6, pp. 889–899, 2006.

[8] M. Gashler, D. Ventura, and T. Martinez, “Iterative non-linear dimen-
sionality reduction with manifold sculpting,” in Advances in Neural
Information Processing Systems 20, J. Platt, D. Koller, Y. Singer, and
S. Roweis, Eds. Cambridge, MA: MIT Press, 2008.

[9] M. J. Black, “Eigentracking: Robust matching and tracking of ar-
ticulated objects using a view-based representation,” in International
Journal of Computer Vision, 1996, pp. 329–342.

[10] J. Crowley, F. Wallner, and B. Schiele, “Position estimation using
principal components of range data,” Robotics and Automation, 1998.
Proceedings. 1998 IEEE International Conference on, vol. 4, pp.
3121–3128 vol.4, May 1998.

[11] F. Pourraz and J. L. Crowley, “Continuity properties of the appearance
manifold for mobile robot position estimation,” in in Proceedings of
the 2nd IEEE Workshop on Perception for Mobile Agents. IEEE
Press, 1998, p. 2001.

[12] S. Nayar, S. Nene, and H. Murase, “Subspace methods for robot
vision,” Robotics and Automation, IEEE Transactions on, vol. 12,
no. 5, pp. 750–758, Oct 1996.

[13] N. Keeratipranon, F. Maire, and H. Huang, “Manifold learning for
robot navigation,” International Journal of Neural Systems, vol. 16:5,
pp. 383–392, October 2006.

[14] D. Floreano and F. Mondada, “Automatic creation of an autonomous
agent: Genetic evolution of a neural-network driven robot,” in In. MIT
Press, 1994, pp. 421–430.

[15] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P. yves
Glorennec, H. Hjalmarsson, and A. Juditsky, “Nonlinear black-box
modeling in system identification: a unified overview,” Automatica,
vol. 31, pp. 1691–1724, 1995.

[16] A. Blanco, M. Delgado, and M. C. Pegalajar, “A real-coded genetic
algorithm for training recurrent neural networks,” Neural Networks,
vol. 14, no. 1, pp. 93–105, 2001.

[17] E. D. Sontag, “Neural networks for control,” in in Essays on Control:
Perspectives in the Theory and its Applications (H.L. Trentelman and.
Birkhauser, 1993, pp. 339–380.

[18] M. C. Mozer, “A focused backpropagation algorithm for temporal
pattern recognition,” in Backpropagation: Theory, architectures, and
applications, Y. Chauvin and D. Rumelhart, Eds. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1995, pp. 137–169.

[19] A. J. Robinson and F. Fallside, “The utility driven dynamic error prop-
agation network,” Cambridge University, Engineering Department,
Tech. Rep. CUED/F-INFENG/TR.1, 1987.

[20] M. Cuéllar, M. Delgado, and M. Pegalajar, “An application of non-
linear programming to train recurrent neural networks in time series
prediction,” Enterprise Information Systems VII, pp. 95–102, 2006.

[21] O. Jenkins and M. Matarić, “A spatio-temporal extension to isomap
nonlinear dimension reduction,” in Proceedings of the twenty-first
international conference on Machine learning. ACM, 2004, p. 56.

