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ABSTRACT

Advancing the Effectiveness of Non-Linear Dimensionality Reduction
Techniques

Michael S. Gashler
Department of Computer Science, BYU

Doctor of Philosophy

Data that is represented with high dimensionality presents a computational complexity
challenge for many existing algorithms. Limiting dimensionality by discarding attributes is
sometimes a poor solution to this problem because significant high-level concepts may be
encoded in the data across many or all of the attributes. Non-linear dimensionality reduction
(NLDR) techniques have been successful with many problems at minimizing dimensionality
while preserving intrinsic high-level concepts that are encoded with varying combinations of
attributes. Unfortunately, many challenges remain with existing NLDR techniques, including
excessive computational requirements, an inability to benefit from prior knowledge, and
an inability to handle certain difficult conditions that occur in data with many real-world
problems. Further, certain practical factors have limited advancement in NLDR, such as
a lack of clarity regarding suitable applications for NLDR, and a general inavailability of
efficient implementations of complex algorithms.

This dissertation presents a collection of papers that advance the state of NLDR in
each of these areas. Contributions of this dissertation include:

• An NLDR algorithm, called Manifold Sculpting, that optimizes its solution using
graduated optimization. This approach enables it to obtain better results than methods
that only optimize an approximate problem. Additionally, Manifold Sculpting can
benefit from prior knowledge about the problem.
• An intelligent neighbor-finding technique called SAFFRON that improves the breadth

of problems that existing NLDR techniques can handle.
• A neighborhood refinement technique called CycleCut that further increases the robust-

ness of existing NLDR techniques, and that can work in conjunction with SAFFRON
to solve difficult problems.
• Demonstrations of specific applications for NLDR techniques, including the estimation

of state within dynamical systems, training of recurrent neural networks, and imputing
missing values in data.
• An open source toolkit containing each of the techniques described in this dissertation,

as well as several existing NLDR algorithms, and other useful machine learning methods.

Keywords: non-linear dimensionality reduction, manifold learning, intrinsic variables, state
estimation, imputation, neighbor selection, neighborhood refinement
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Part I

Overview, Introduction, and

Background

Part I provides an overview of this dissertation, and introduces its topic. It is divided

into two chapters.

Chapter 1 describes the motivation for this work. It explains the function performed

by dimensionality reduction algorithms, and discusses how this technique may be used as an

important component in solving many problems.

Chapter 2 gives an overview of related works. It presents a high-level description of

other non-linear algorithms for reducing dimensionality, and also of other approaches for

using dimensionality reduction to solve problems.

Part II presents improved techniques for performing non-linear dimensionality reduc-

tion, or manifold learning, and for making these techniques effective across a diversity of

circumstances.

Part III presents works that demonstrate specific applications for manifold learning,

and also an open source toolkit containint implementations of various NLDR and manifold

learning algorithms.

1



Part IV concludes by summarizing the contributions of this dissertation, identifying

significant problems that remain to be solved in this area, and speculating about further

research that is likely to lead to important advances.

2



Chapter 1

Motivation, and Concept Definitions

Reducing dimensionality is an important function of the human mind. We can reduce

visual information encoded by more than 90 million photo-sensitive rods in our retinas to just

a few words that succinctly describe what we are looking at. Audio, olfactory, and tactile

information are likewise presented to the brain by means of a very large number of nerves,

yet we can summarize all of this information with a few adjectives that show we understand

what these complex and high-dimensional observations represent. The effectiveness of human

memory further implies that reducing information is an important function of human thinking.

It naturally follows that reducing the dimensionality of data might be an important operation

for computational processes that work with large amounts of data.

As digital information becomes available in ever-increasing abundance, the importance

of automated compuational methods for processing this information also grows. Humans

increasingly rely on summaries and visualizations of data to make decisions, as it is often no

longer practical to manually consume all of the available information. Even many otherwise

efficient algorithms become computationally intractable when operating on high-dimensional

data. This phenomenon is so common that it has been given the label “the curse of

dimensionality” [Bellman, 1961].

In this dissertation, we explore methods that improve the effectiveness of automated

methods for reducing dimensionality. These approaches mitigate the curse of dimensionality

by summarizing high-dimensional vectors with a low-dimensional representation.

3



1.1 Dimensionality Reduction

Algorithms that produce a low-dimensional representation of high-dimensional data are

called dimensionality reduction algorithms. Formally, let X be a set of d-dimensional vectors,

{x1,x2,x3, ...,xn}. A dimensionality reduction algorithm would accept X as input, and would

return a corresponding set, V, of t-dimensional vectors, {v1,v2,v3, ...,vn}, where t < d. Each

vi ∈ V can be thought of as a low-dimensional representation, projection, or summary of

xi ∈ X. (Since categorical values can be trivially encoded as a vector of real values, and other

types of data can often be represented with real values as well, we generally assume that

algorithms which operate on vectors of real values are sufficient to handle arbitrary types

of data. We will consider a study of the most effective way to encode various types of data

using real values to be outside the scope of this work.)

The high-dimensional vectors in X are typically referred to as “samples” or “observa-

tions”. The features in X may be called “input attributes”, or “extrinsic variables”. The

corresponding low-dimensional vectors in V are referred to as “intrinsic values”, “target

vectors”, or “reduced-dimensional vectors”. The attributes in V may be called “intrinsic

variables”.

Of particular interest in this dissertation are non-linear dimensionality reduction

(NLDR) algorithms. These are algorithms that reduce the dimensionality of data with a

non-linear transformation. It is common in many domains for high-dimensional observations

to exhibit a high degree of linearity in local regions, but not necessarily across the entire

dataset (globally). For example, the earth may be approximately flat in local regions, even

though it is globally spherical. As another example, if a digital camera is moved by a very

small amount, the resulting image is likely to differ by only a small amount, since most

of the image content still depicts the same scene. Thus, the images collected by such a

camera generally have a locally-linear relationship to the camera’s position and orientation.

If, however, the camera is moved by a large amount, there is no reason to suppose that

the new scene will have anything in common with the original image. Thus, such images

4



generally do not exhibit global linearity. NLDR algorithms, therefore, typically seek to find a

low-dimensional representation of data that exhibits linearity in local regions, but without

applying any such constraint globally.

High-dimensional observations that exhibit local linearity can be viewed as sampling

the surface of a manifold, a structure of lower dimensionality embedded within higher-

dimensional space. An algorithm that seeks to model a manifold from sample observations is

called a “manifold learning algorithm”, or “manifold learner”. Technically, manifold learning

is more specific than NLDR, because manifold learning implies that a model is trained to

represent the underlying manifold represented by the data samples. Such a model could

be useful, for example, for mapping out-of-band samples from high-to-low or low-to-high

dimensional space. The reader should be aware, however, that the literature on this topic

is not always careful to make this distinction. Often, the term manifold learning is used

interchangibly with the term NLDR to refer to any technique that reduces dimensionality.

Fortunately, an arbitrary NLDR algorithm can be easily converted into a manifold learner

by combining it with a regression model. This can be done by first passing X to the NLDR

algorithm to compute V, and then training the regression model to map from X to V, or

from V to X.

1.2 Applications for NLDR

Around the turn of the century (2000), several NLDR algorithms (which we review in greater

detail in the next chapter) were published in conjunction with results that demonstrated the

ability to recover high-level concepts, such as the orientation of a head, or the curliness of a

hand-written digit, from collections of digital images. These results were significant because

no single pixel in any of the images was sufficient by itself to characterize the high-level

concept represented in the image, yet the NLDR algorithms were able to accurately summarize

these concepts with low-dimensional values. This demonstrated that machines were capable

of performing a reduction task that previously only humans were able to perform, using an

5



understanding of the high-level concepts exhibited within the images. It also triggered a

flurry of interest in using NLDR as a component in machine learning and data mining tasks.

Dimensionality reduction has been used for a long time to make computationally

expensive algorithms more tractable. Recent advances in NLDR have made this technique

more effective with problems that involve data on non-linear manifolds. It has also opened

the door for applications that require an understanding of high-level concepts within data.

For example, NLDR is now being applied for many tasks involving computer vision, character

recognition, etc. In Chapter 7, we demonstrate that NLDR can be used effectively for

estimating state in dynamical systems. In Chapter 8, we apply NLDR with the application

of imputing missing values in data.

1.3 Thesis Statement

Improvements to non-linear dimensionality reduction algorithms can enable them to operate

more efficiently, handle ill-behaved manifolds, and remove non-linearities in their estimates

of intrinsic variables. These improvements increase their effectiveness with existing dimen-

sionality reduction tasks, and also make them suitable for use with a greater diversity of

problems than current approaches can handle, including imputing missing values in data,

and modeling the state of dynamical systems.

1.4 Publications

Chapters 3 through 9 of this dissertation consist of works that have been published as a

result of this dissertation, and also one that has been submitted for review. The references

for these works are listed here, and are numbered according to the chapter in which they

appear in this dissertation:
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3. Gashler, Michael S. and Ventura, Dan and Martinez, Tony, Manifold Learning by

Graduated Optimization, IEEE Transactions on Systems, Man, and Cybernetics Part B:

Cybernetics, 41, 6, 1458–1470, 2011.

4. Gashler, Michael S. and Giraud-Carrier, Christophe and Martinez, Tony, Decision

Tree Ensemble: Small Heterogeneous Is Better Than Large Homogeneous, Seventh

International Conference on Machine Learning and Applications, 2008. ICMLA ’08.,

900–905, 2008, Dec., 10.1109/ICMLA.2008.154.

5. Gashler, Michael S. and Martinez, Tony, Robust Manifold Learning With CycleCut,

Connection Science. 24, 1, pp. 57–69. 2012. DOI: 10.1080/09540091.2012.664122.

6. Gashler, Michael S. and Martinez, Tony, Tangent Space Guided Intelligent Neighbor

Finding, Proceedings of the IEEE International Joint Conference on Neural Networks

IJCNN’11, 2617–2624, 2011, IEEE Press, San Jose, California, U.S.A.

7. Gashler, Michael S. and Martinez, Tony, Temporal Nonlinear Dimensionality Reduction,

Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN’11,

1959–1966, 2011, IEEE Press, San Jose, California, U.S.A.

8. Gashler, Michael S. and Smith, Michael S. and Morris, Richard. and Martinez, Tony.

Missing Value Imputation With Unsupervised Backpropagation. In submission.

9. Gashler, Michael S., Waffles: A Machine Learning Toolkit, Journal of Machine Learning

Research, MLOSS 12, 2383–2387, 2011, July, pp. 1532–4435, JMLR.org and Microtome

Publishing, http://www.jmlr.org/papers/volume12/gashler11a/gashler11a.pdf.

It should also be noted that the publication in chapter 3 builds upon an earlier

publication which was included in the author’s Masters’ thesis, and was not included in this

Doctors’ dissertation. The reference for that publication is:
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Gashler, Michael S. and Ventura, Dan and Martinez, Tony, Iterative Non-linear Di-

mensionality Reduction with Manifold Sculpting, Advances in Neural Information

Processing Systems 20, 513–520, 2008, Platt, J.C. and Koller, D. and Singer, Y. and

Roweis, S., MIT Press, Cambridge, MA.
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Chapter 2

Related Works

This dissertation builds upon a foundation of much previous research. This work

would not have been possible without the diligent efforts of those who discovered and shared

knowledge in a variety of fields. This chapter briefly surveys work previously done in areas

related to the topics covered in this dissertation. A more targeted and comprehensive review

of related works is given in each of the individual chapters that comprise this dissertation.

2.1 Dimensionality Reduction Algorithms

Perhaps the simplest form of dimensionality reduction is feature selection, which involves

picking a useful subset of the attributes represented in a dataset. It may not be possible to

identify the first use of feature selection because people have been careful to choose relevant

attributes for as long as they have worked with structured data, but much work has been

done in recent times to improve automated feature selection methods [Dash and Liu, 1997].

One advantage of feature selection methods is that the selected attributes retain their original

meaning. In this dissertation, however, we focus on dimensionality reduction methods that

combine attributes in a manner such that the intrinsic variables do not correspond directly

with any of the extrinsic variables. These methods generally have the advantage of being

able to compress more information into fewer dimensions. Additionally, they often form

intrinsic variables that encode some high-level concept that was previously only represented

using many or all of the extrinsic variables. This phenomenon is a particular focus of this

9



dissertation. The first widely-used dimensionality reduction technique that combined features

in this manner is Principal Component Analysis (PCA) [Hotelling, 1933]. PCA finds the

linear combinations of attributes that account for the variance within the data in a greedy

order of components.

One of the first dimensionality reduction algorithms that utilized a non-linear trans-

formation is Sammon’s mapping [Sammon, 1969]. Subsequently, several techniques based on

Self-organizing Map (SOM) [Kohonen, 1997] were presented, including Curvilinear Component

Analysis and Curvilinear Distance Analysis (CDA)[Demartines and Hérault, 1997, Lee et al.,

2000]. CDA is noteworthy in that it utilized a method for estimating geodesic distances

by hopping from neighbor-to-neighbor within the data. In 1999, a popular approach called

Kernel-PCA [Schölkopf et al., 1999] was presented, which applied the “kernel trick” [Aizerman

et al., 1964] within Principal Component Analysis to handle non-linearities. Instead of finding

principal components based on the covariance of the data, it finds principal components

based on the covariance of augmented data, and it computes this efficiently by means of the

kernel trick.

The study of non-linear dimensionality reduction techniques increased dramatically

in machine learning communities in 2000 when Isomap [Tenenbaum et al., 2000] and LLE

[Roweis and Saul, 2000] were introduced. Isomap utilizes the same technique for estimating

geodesic distances as CDA, but computes results using classical multi-dimensional scaling,

instead of the iterative approach based on SOM that CDA uses. LLE is similar to Isomap

in that it computes results in a single pass, but it differs in the relationships between

points that it seeks to preserve. LLE computes each point as a linear combination of its

neighboring points. It also has the advantage of being highly optimizable using sparse

matrix techniques. In addition to being relatively efficient, Isomap and LLE also presented

results that demonstrated the ability to recover high-level (encoded across many attributes)

concepts from large datasets. Since that time, many new NLDR algorithms have been

presented. Some examples include Local Tangent Space Alignment [Zhang and Zha, 2002],

10



which estimates the tangent-space in local neighborhoods and then seeks a transformation

that aligns these tangent spaces, Maximum Variance Unfolding [Weinberger et al., 2004],

which utilizes semi-definite programming to maximize the variance within data constrained

to preserve distances and angles in local neighborhoods, and Non-linear PCA [Scholz et al.,

2005], which uses a variation on backpropagation to train a multi-layer perceptron to fit to a

manifold structure. Many other algorithms were also introducted [Belkin and Niyogi, 2001,

Donoho and Grimes, 2003, Lafon, 2004, Hinton and Salakhutdinov, 2006, Venna and Kaski,

2006, Zhang and Wang, 2007], which we will not attempt to describe in this dissertation.

2.2 Neighborhood Selection and Refinement

Many NLDR algorithms rely on finding local neighborhoods within sample points to represent

the structure of the manifolds they sample. This dissertation also presents techniques

for intelligently selecting and refining local neighborhoods for manifold learning. It has

been shown that as dimensionality becomes large, the distance from a point to its farthest

neighbor approaches the distance to its nearest neighbor [Jonathan et al., 1999]. Thus,

intelligent neighbor-selecting techniques become important for manifold learning in high-

dimensional space. Numerous alternatative distance metrics have been proposed, but more

recent techniques that adaptively analyze the data to select neighbors have shown increased

effectiveness with high-dimensional data [Zhou et al., 2004, Wei et al., 2008]. Even when

intelligent neighbor-selecting techniques are used, rogue neighbor connections that shortcut

across manifold boundaries can cause problems. Techniques have been presented to detect

and remove such connections [Cukierski and Foran, 2008].

2.3 Applications

One of the applications for which this dissertation presents a customized dimensionality

reduction algorithm is that of modeling a dynamical system. Many papers have proposed

11



techniques that utilize dimensionality reduction to solve the more specific problem of robot

tracking [Black, 1996, Crowley et al., 1998, Pourraz and Crowley, 1998]. As advances in

manifold learning have been made, several researchers have pointed out that robot observations

lie on the surface of a manifold, and that manifold learning can be used to organize this

information [Nayar et al., 1996, Keeratipranon et al., 2006].

Another application we visit is that of imputing missing values in datasets. This topic

has been well-studied [Jones, 1996, Quinlan, 1989, Lakshminarayan et al., 1996, Farhangfar

et al., 2008, Shafer, 1997, Schafer and Graham, 2002, Li et al., 2004, Acuña and Rodriguez,

2004]. The most relevant approaches to this dissertation, however, are those that utilize a

form of dimensionality reduction for imputation [Koren et al., 2009, Scholz et al., 2005].

This dissertation also presents an open source toolkit of machine learning algorithms,

with particular emphasis on NLDR techniques. The need for such toolkits has been formally

identified, and a call made for their development [Sonnenburg et al., 2007]. The toolkit

presented in this dissertation was originally released to the public prior to that call, but

development has continued since that time to meet the needs of the machine learning

community. Several other open source machine learning toolkits have also been developed

[Witten and Frank, 2005, Sonnenburg et al., 2010, Zito et al., 2009, King, 2009, Webers et al.,

2009, Albanese et al., 2012], but none of them include all of the NLDR techniques that our

toolkit covers.
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Part II

Improving Non-linear Dimensionality

Reduction

The chapters in this part explore methods for improving upon or augmenting the

capabilities of existing learning techniques.

Chapter 3 presents a method for NLDR called Manifold Sculpting based on graduated

optimization. Most existing NLDR techniques utilize some form of optimization technique to

find points in low-dimensional space that exhibit distances, or other relationships, in local

neighborhoods similar to those in high-dimensional space. Because of the difficulty of this

optimization step, most algorithms use an efficient optimization technique that only finds a

solution to an approximate problem. The approach demonstrated in this chapter, however,

shows that it is possible to efficiently optimize directly with respect to local distances and

other relationships without resorting to an approximate solution. Additionally, this chapter

shows that partial supervision can be used to improve the efficiency of this optimization step.

Chapter 4 presents an ensemble technique for improving supervised learning with de-

cision trees. Although dimensionality reduction is generally considered to be an unsupervised

process, feature selection is an example of dimensionality reduction that is commonly assisted
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by class labels. Another example is Chapter 3, which demonstrates that adding supervision to

dimensionality reduction can improve performance. Supervised learning methods, therefore,

may be viewed as a form of dimensionality reduction that reduces a vector of features to a

representative class label. The approach presented in this chaper is significant because it

demonstrates classification accuracy that outperforms that of Random Forest, an ensemble

approach known for its high accuracy with many datasets [Caruana et al., 2008].

Chapter 5 presents a technique called CycleCut for pruning connections in a graph

that interfere with NLDR. Because most NLDR techniques, including Manifold Sculpting

(presented in Chapter 3), rely on a graph of neighborhood connections to represent the

structure of the manifold sampled by the data points, refining those neighborhood connections

can have a significant impact on the results from NLDR. In particular, the approach presented

in this chapter enable NLDR to achieve good results with problems that could not be effectively

analyzed using previously existing techniques.

Chapter 6 presents a method called SAFFRON for intelligent neighbor-finding. Like

CycleCut, SAFFRON also focusses on improving NLDR by improving the graph of neighbor-

hood connections that represent the manifold. SAFFRON, however, focusses on carefully

selecting neighbors with desirable properties, rather than pruning them after local neighbor-

hoods have been established. Significantly, SAFFRON can be combined with CycleCut to

solve difficult manifolds, including some self-intersecting manifolds. Both approaches can

also be used in conjunction with Manifold Sculpting to form a robust NLDR algorithm.
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Chapter 3

Manifold Learning by Graduated Optimization

Abstract: We present an algorithm for manifold learning called Manifold Sculpt-

ing, which utilizes graduated optimization to seek an accurate manifold embedding.

Empirical analysis across a wide range of manifold problems indicates that Manifold

Sculpting yields more accurate results than a number of existing algorithms, including

Isomap, LLE, HLLE, and L-MVU, and is significantly more efficient than HLLE and

L-MVU. Manifold Sculpting also has the ability to benefit from prior knowledge about

expected results.

3.1 Introduction

Large dimensionality is a significant problem for many machine learning algorithms [Bellman,

1961]. Dimensionality reduction algorithms address this issue by projecting data into fewer

dimensions while attempting to preserve as much of the informational content in the data as

possible.

Dimensionality reduction involves transforming data to occupy as few dimensions as

possible so that the other dimensions may be eliminated with minimal loss of information.

Nonlinear transformations have more flexibility to align the data with a few dimensional

axes, but also have more potential to disrupt the structure of the data in that process.

Manifold learning algorithms seek a balance by prioritizing the preservation of data structure

in local neighborhoods. A projection is deemed to be good if the relationships (typically
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1.

2.

3.

...

Figure 3.1: With graduated optimization, the solution to each optimization problem gives
a good starting point for the next harder problem. If the optimum of the first problem is
found, and the solution to each problem is within the convex region around the optimum of
the next problem, then graduated optimization will find the optimum of the final problem.

distances and/or angles) between neighboring points after the projection are very similar to

the relationships between those same points before the projection.

Manifold learning, therefore, requires solving an optimization problem. In general,

global optimization over a non-linear error surface is an NP-hard problem [Cheng and Kovalyov,

2002]. Most popular manifold learning algorithms, such as Isomap [Tenenbaum et al., 2000]

and Locally Linear Embedding (LLE) [Roweis and Saul, 2000], approach this problem by

casting it as an over-constrained convex optimization problem in the low-dimensional space.

Unfortunately, much is lost in casting the inherently non-convex problem as a convex problem.

The solution to the convex problem can typically be computed rapidly, but the results do not

necessarily preserve the distances and angles between neighboring points as well as can be

done in low-dimensional space. Algorithms that perform optimization in the high-dimensional

space, such as Maximum Variance Unfolding (MVU) [Weinberger et al., 2004], produce better

results, but tend to have unreasonably high computational costs.

We make the novel observation that the optimization problem inherent in manifold

learning can be solved using graduated optimization. Graduated optimization involves solving
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a sequence of successively more difficult optimization problems, where the solution to each

problem gives a good starting point for the next problem, as illustrated in Figure 3.1. This

technique is commonly used with hierarchical pyramid methods for matching objects within

images [Burt, 1981]. A related technique called numerical continuation [Wu, 1996] has been

used to approximate solutions to parameterized equations in chaotic dynamical systems,

molecular conformation, and other areas. To our knowledge, graduated optimization has not

yet been recognized as being suitable for addressing the problem of manifold learning. With

graduated optimization, if the first optimization problem in the sequence can be solved, and if

the solution to each problem falls within the locally-convex region around the solution to the

next problem, then it will find the globally optimal solution to the non-convex optimization

problem at the end of the sequence.

We present an algorithm for manifold learning called Manifold Sculpting, which discov-

ers manifolds through a process of graduated optimization. Manifold Sculpting approaches

the optimization problem of manifold learning in a manner that enables it to solve the

optimization problem in the original high-dimensional space, while only requiring the compu-

tational cost of optimizing in the reduced low-dimensional space. Further, because graduated

optimization is robust to local optima, it is not necessary to cast it as an over-constrained

convex optimization problem. Instead, Manifold Sculpting directly optimizes to restore

the relationships computed between neighboring points. This gives Manifold Sculpting the

flexibility to operate using an arbitrary set of distance metrics or other relationship met-

rics. Additionally, Manifold Sculpting has the ability to benefit from prior knowledge about

expected results and the ability to further refine the results from faster manifold learning

algorithms. We report results from a variety of experiments which demonstrate that Manifold

Sculpting yields results that are typically about an order of magnitude more accurate than

state-of-the-art manifold learning algorithms, including Hessian Locally Linear Embedding,

and Landmark Maximum Variance Unfolding.
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Figure 3.2: Comparison of several manifold learners with a Swiss Roll manifold. Color is
used to indicate how points in the results correspond to points on the manifold. Isomap
has trouble with sampling holes. LLE has trouble with changes in sample density. HLLE,
L-MVU, and Manifold Sculpting all produce very good results with this particular problem.
(Results with other problems are presented in Section 3.4.)

Section 3.2 discusses work that has previously been done in manifold learning. Section

3.3 describes the Manifold Sculpting algorithm in detail. Section 3.4 reports the results of a

thorough empirical analysis comparing Manifold Sculpting with existing manifold learning

algorithms. Finally, Section 3.5 summarizes the contributions of Manifold Sculpting.

3.2 Related Work

Dimensionality reduction has been studied for a long time [Hotelling, 1933], but has only

started to become a mainstay of machine learning in the last decade. More algorithms exist

than we can mention, but we will attempt to give a summary of the major work that has been
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done in this field. Early nonlinear dimensionality reduction algorithms, such as Nonlinear

Multidimensional Scaling [Shepard and Carroll, 1965] and Nonlinear Mapping [Sammon,

1969], have shown effectiveness, but are unable to handle high nonlinearities in the data.

Curvilinear Component Analysis (CCA) [Demartines and Hérault, 1997] uses a neural network

technique to solve the manifold embedding, and Curvilinear Distance Analysis (CDA) [Lee

et al., 2000] takes it a step further by using distance on the manifold surface as a metric for

identifying manifold structure. These algorithms are unfortunately both computationally

demanding, and suffer from the problems of local minima.

Isomap [Tenenbaum et al., 2000] uses the same metric as CDA, but solves for the

embedding into fewer dimensions using classic multidimensional scaling, which enables it

to operate significantly faster. Unfortunately, it still struggles in poorly sampled areas

of the manifold. (See Figure 3.2.A.) Locally Linear Embedding (LLE) [Roweis and Saul,

2000] achieves even better speed by using only local vector relationships represented in a

sparse matrix. It is more robust to sample holes, but tends to produce quite distorted

results when the sample density is non-uniform. (See Figure 3.2.B.) With these algorithms,

a flurry of new research in manifold learning began to produce numerous new techniques.

L-Isomap is an improvement to the Isomap algorithm that uses landmarks to reduce the

amount of necessary computation [de Silva and Tenenbaum, 2002]. Other algorithms include

Kernel Principal Component Analysis [Schölkopf et al., 1999], Laplacian Eigenmaps [Belkin

and Niyogi, 2001], Manifold Charting [Brand, 2003], Manifold Parzen Windows [Vincent

and Bengio, 2003], Hessian LLE [Donoho and Grimes, 2003], and there are many more

[Bengio and Monperrus, 2005, Levina and Bickel, 2005, Zhang and Zha, 2006]. Hessian LLE

preserves the manifold structure better than the other algorithms but is, unfortunately, very

computationally expensive. (See Figure 3.2.C.)

More recently, the Maximum Variance Unfolding (MVU) algorithm has become

popular for manifold learning [Weinberger et al., 2004]. This algorithm seeks to maximize

variance in the data points while preserving distances and angles in local neighborhoods. It
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finds the solution to this problem using semidefinite programming. Unfortunately, because it

optimizes in the original high-dimensional space, and because of the computational complexity

of semidefinite programming, it is too inefficient to operate on large datasets. Landmark

Maximum Variance Unfolding (L-MVU) [Weinberger et al., 2005] utilizes randomly chosen

landmarks to reduce the computational complexity of MVU. (See Figure 3.2.D.) Although

this technique yields somewhat degraded results, it makes the algorithm more suitable for

larger problems. Excessive computational complexity, however, is still the most significant

drawback of L-MVU.

Several recent manifold learning algorithms have also been presented with specialized

capabilities. For example, LGGA [Huang et al., 2009] creates a continuous mapping, such

that out-of-sample points can be projected efficiently onto a learned manifold. We show that

Manifold Sculpting can achieve a similar capability using a pseudo-incremental technique.

S-Isomap [Geng et al., 2005] has the ability to benefit from partial supervision. Manifold

Sculpting can also utilize supervision to improve its manifold embedding. TRIMAP [Chen

et al., 2010] and the D-C Method [Meng et al., 2008] are manifold learning techniques that

specifically seek to preserve class-separability in their projections for classification tasks.

Manifold Sculpting is not designed specifically for this application.

The primary difference between other methods that have been presented and Manifold

Sculpting is that others use various convex optimization techniques to approximate a solution

to the non-convex problem of preserving relationships in local neighborhoods, while the

latter seeks to directly solve this non-convex optimization problem with the use of graduated

optimization. Manifold Sculpting was first presented in [Gashler et al., 2008b]. In this paper,

we present an improved version of the algorithm, demonstrate additional capabilities, and

show that it gives better results than modern algorithms. (Figure 3.2.E shows that results

with the Swiss Roll manifold are visually similar to those of HLLE or L-MVU. In Section 3.4,

we show that an empirical analysis with this and several other problems indicates that the

results of Manifold Sculpting tend to be much more accurate than those of other algorithms.)
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Table 3.1: A high-level overview of the Manifold Sculpting algorithm.

1 Find the k-nearest neighbors of each point.
2 Compute a set of relationships between neighboring points.
3 Pre-process the data with a faster dimensionality reduction

algorithm. (This step is optional.)
4 Do until no improvement is made for 50 iterations:

a. Scale the data in the non-preserved dimensions by a
constant factor σ, where σ < 1.

b. Restore the relationships computed in step 2 by
adjusting the data points in the first t dimensions.

5 Drop the non-preserved dimensions from the data.

3.3 The Manifold Sculpting Algorithm

An overview of the Manifold Sculpting algorithm is provided in Table 3.1, and detailed pseudo

code is provided in Figure 3.5. Let

d ≡ The original dimensionality of the data.

t ≡ The number of target dimensions into which the

data will be projected.

k ≡ The number of neighbors used to define a local

neighborhood.

P ≡ The set of all data points represented as vectors

in <d, such that pij is the jth dimensional

element of the ith point in P.

N ≡ A |P| × k matrix such that nij is the index of

the jth neighbor of point pi,∗.

σ ≡ A constant scaling factor.

η ≡ The step size (which is dynamically adjusted).

3.3.1 Steps 1 and 2: Compute local relationships

Manifold Sculpting can operate using custom distance/relationship metrics. In our imple-

mentation, we use Euclidean distance and local angles. We compute the k-nearest neighbors,
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Figure 3.3: δ and θ define the relationships that Manifold Sculpting seeks to preserve in the
projection.

nij, of each point. For each j (where 1 ≤ j ≤ k) we compute the Euclidean distance δij

between pi,∗ and each of its neighbor points. We also compute the angle θij formed by the

two line segments (pi,∗ to point nij) and (point nij to point mij), where point mij is the

most co-linear neighbor of point nij with pi,∗. (See Figure 3.3.) The most co-linear neighbor

is the neighbor point that forms the angle closest to π. The values of δ and θ define the

relationships that the algorithm will seek to preserve during the transformation. The global

average distance between all the neighbors of all points δave is also computed so that distances

may be normalized.

3.3.2 Step 3: Optionally pre-process the data

The data may optionally be pre-processed with another dimensionality reduction algorithm.

Manifold Sculpting will work without this step; however, pre-processing may result in even

faster convergence. For example, a fast but imprecise algorithm, such as LLE, may be used

to initially unfold the manifold, and then Manifold Sculpting can further refine its results

to obtain a better embedding. (This technique is demonstrated in Section 3.4.2.) Even

pre-processing with a linear dimensionality reduction algorithm may give some speed benefit.
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Figure 3.4: A Swiss Roll manifold shown at four stages of the iterative transformation. This
experiment was performed with 2000 data points, k = 14, σ = 0.99, and iterations = 300.

For example, Principal Component Analysis (PCA) can be used to rotate the dimensional

axes in order to shift the information in the data into the first several dimensions. Manifold

Sculpting will then further compact the information by unfolding the non-linear components

in the data. Except where otherwise noted, we use PCA to pre-process data in this manner.

Efficient PCA algorithms generally compute only the first few principal components,

and simultaneously project away the additional dimensions. In this case, however, it is

preferable to rotate the axes to align the data with the first few principal components without

projecting away the remaining dimensions, since that will be done later in step 5. The

additional information in those dimensions is useful in step 4 for reducing tension in the

graduated optimization step. Section 3.6 gives pseudo-code for aligning axes with the first

few principal components without projecting away the additional dimensions.

3.3.3 Step 4: Transform the data

The data is iteratively transformed as shown in Figure 3.4. This transformation continues

until at least log(0.01)/log(σ) iterations are performed, and the sum error has not improved

over a window of 50 iterations. The first criterion ensures that most (99%) of the variance is

scaled out of the dimensions that will be dropped in the projection. The second criterion
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allows the algorithm to operate as long as it continues to improve the results. These criteria

can be modified to suit the desired quality of results – if precision is important, a larger

window may be used; if speed is important, early stopping may be appropriate.

Step 4a: Reduce the variance in non-target dimensions by scaling.

All the values in P except those in the first t dimensions are scaled down by multiplying by

a constant factor σ, where σ is slightly less than 1. This value controls the rate at which

the optimization problem is graduated. A conservative value, such as σ = 0.999, will ensure

that the error surface is transformed slowly, so that the global optimum can be followed with

precision. A more liberal value, such as σ = 0.99, can be used to obtain results quickly, with

some risk of falling into a local optimum. Except where otherwise indicated, we use the value

σ = 0.99 for all of the experiments in this paper.

To compensate for this down-scaling in the non-preserved dimensions, the values in

the first t dimensions are scaled up to keep the average neighbor distance equal to δave. As

the algorithm iterates, this will shift the variance out of the non-preserved dimensions, and

into the preserved dimensions. Thus, when the projection is performed in step 5, very little

information will be lost.

Step 4b: Restore original relationships.

Next, the values in the first t dimensions in P are adjusted to recover the relationships that

are distorted by scaling in the previous step. This is the optimization phase of graduated

optimization. A heuristic error value is used to measure the extent to which the current

relationships between neighboring points differ from the original relationships:

εpi =
k∑
j=0

wij

((
δij0 − δij

2δave

)2

+

(
max(0, θij0 − θij)

π

)2
)

(3.1)

where δij is the current distance to point nij, δij0 is the original distance to point nij

measured in step 2, θij is the current angle, θij0 is the original angle measured in step 2.
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The denominators are normalizing factors that give each term approximately equal weight.

When εpi = 0, the relationship metrics have been restored to their original values. We adjust

the values in the first t dimensions of each point to minimize this error value. Since the

equation for the true gradient of the error surface defined by this heuristic is complex, and is

O(d3) to compute, we use the simple hill-climbing technique of adjusting in each dimension

in the direction that yields improvement until a local optimum is found. This technique is

sufficient to follow the trough of the changing error surface. Pseudo-code for our hill-climbing

technique is given in Figure 3.6.

Three performance optimizations can be used in this step to significantly speed

convergence:

First, it is observed that the component of distances and angles in the non-preserved

dimensions does not change, except that it is scaled by σ in each iteration. These values can

be cached (as long as the cached values are scaled by σ at each iteration) such that only the

first t dimensions must be evaluated to compute the error heuristic. Since t tends to be a

small constant value, this can have a significant impact on runtime performance.

Second, the step size, η, can be dynamically adjusted to keep the number of total steps

low. We adjust η after each iteration to keep the total number of steps taken approximately

equal to the total number of data points. If the number of steps is less than the number

of data points, then η ← η ∗ 0.9, otherwise η ← η ∗ 1.1. Experimentally this technique was

found to converge significantly faster than using a constant or decaying value for η.

Third, it is observed that the points which have already been adjusted in the current

iteration have a more positive influence for guiding the movement of other points to reduce

overall error than the points which have not yet been adjusted. Thus, we begin step 4b by

starting with a randomly selected point, and we visit each point using a breadth-first traversal

ordering. Intuitively this may be analogous to how a person smoothes a crumpled piece of

paper by starting at an arbitrary point and smoothing outward. Thus, higher weight is given

to the component of the error contributed by neighbors that have already been adjusted in
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the current iteration, such that wij = 1 if point nij has not yet been adjusted in this iteration,

and wij = 10 if point nij has been adjusted. Intuitively, a large weight difference will promote

faster unfolding, while a smaller weight difference should promote more stability. In our

experiments, nearly identical results were obtained using values as low as wij = 5 or as high

as wij = 20 for the case where a neighbor has already been adjusted, so we made no attempt

to further tune wij in any of our experiments.

3.3.4 Step 5: Project the data

At this point nearly all of the variance is contained in the first t dimensions of P . The data

is projected by simply dropping all but the first t dimensions from the representation of the

points.

3.3.5 Graduated Optimization

The optimization technique used by Manifold Sculpting warrants particular consideration.

The algorithm relies on a simple hill climber to adjust the location of each point (in step

4b). It cycles through the dimensions, and for each dimension it tries increasing the value

and decreasing the value, and it accepts whichever yields improvement (or leaves the point

unchanged if neither yields improvement). By itself, this is an unsophisticated optimization

technique that is highly susceptible to falling into a local optimum. The problem over which

Manifold Sculpting ultimately seeks to optimize, however, is not convex. Thus, an additional

component is necessary to ensure that Manifold Sculpting obtains good results.

The key observation of Manifold Sculpting is that after the relationships between

neighboring points has been computed, but before any transformation begins, the error value

will be zero. No set of values for the data points can produce a lower error, so the system

begins in a stable state. The hill climber need not seek a global optimum from a random

starting point. Rather, it need only remain in a stable state while the variance is iteratively
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function manifold sculpting(P)
1 for i from 0 to |P| − 1:

ni ← the k nearest neighbors of pi,∗
2 for i from 0 to |P| − 1:

for j from 0 to k − 1:
δij ← P. distance(i, nij)
θij ← max0<l≤k P. angle(i, nij, njl)
Mij ← argmax0<l≤k P. angle(i, nij, njl)

δave ← average neighbor distance()
η ← δave

3 Call align axes with principal components(P)
4 Until at least (logσ 0.01) iterations, and until no

improvement is made for 50 iterations, do:
4a for i from 0 to |P| − 1:

for j from t to d− 1:
pij ← σpij

while average neighbor distance() < δave:
for i from 0 to |P| − 1:

for j from 0 to t− 1:
pij ← pij/σ

4b r ← random value, 0 ≤ r < |P|
add point r to a queue
steps← 0
A ← empty set
while the queue is not empty, do:

pop index i from the queue
if i /∈ A:
steps← steps+ adjust point(p, η)
add each neighbor of pi,∗ to the queue
add i→ A

if steps ≥ |P|:
η ← η ∗ 1.1

else
η ← η ∗ 0.9

5 Drop all dimensions ≥ t

Figure 3.5: Pseudo code for the Manifold Sculpting algorithm. Note that pseudo code for
the align axes with principal components function is given in Section 3.6, and pseudo code
for the adjust point function is given in Figure 3.6. A C++ implementation of Manifold
Sculpting is available online at http://waffles.sourceforge.net.
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function adjust point(p, η)
s← 0
loop:
ε0 ← compute error(p)
j ← 0
for i from 0 to t− 1:
pi ← pi + η
if compute error(p) < ε0:
j ← j + 1

else
pi ← pi − 2η
if compute error(p) < ε0:
j ← j + 1

else
pi ← pi + η

if j = 0:
return s

s← s+ 1

Figure 3.6: Pseudo code for the adjust point function, where compute error is Equation 3.1.
This is a convex hill climbing algorithm that moves a point to a locally-optimal position, and
returns the number of steps required to get there.

scaled out of the higher dimensions. Thus, by gradually transforming the problem from these

initial conditions, a simple hill-climbing algorithm can be sufficient to follow the optimum.

Gradient-based optimization may be comparable to rolling a ball down a hill and

hoping that it finds its way to a good local optimum. The optimization technique used by

Manifold Sculpting, on the other hand, is more analogous to a ball following at the feet of

a person walking across a trampoline. It begins adjacent to the person’s feet, and seeks

to remain by them as the person moves slowly across the trampoline. As long as the ball

never deviates very far from the person’s feet, the topology of the rest of the trampoline is

irrelevant to the final destination of the ball because the trampoline will always be locally

convex around the person’s feet.

To understand why this approach tends to be effective, let us first consider the

hypothetical case where the manifold represented by the original dataset is topologically close

28



to the optimally transformed data. In other words, suppose the optimally transformed data

with all variance in the first t dimensions can be obtained through a continuous transformation.

Further, suppose that there exists such a continuous transformation that would also preserve

the relationships in local neighborhoods at all times during the transformation. It follows

that there will be a globally optimal embedding (with an error of zero) at any time during

the transformation. Further, because the transformation is topologically continuous, that

embedding will follow a continuous path through the error space, beginning at the point that

represents the original data, and ending with the optimally transformed data. At any given

time, this embedding, which is known to be optimal with respect to the error surface at that

time, will be found at the exact bottom of a locally-convex basin. Thus, if the continuous

transform is approximated with small enough values for σ (the scaling rate) and η (the step

size), then the system can be certain to finally arrive at the globally optimal solution. This is

not a proof that Manifold Sculpting will always yield optimal results, however, because there

is no guarantee that there exists such a continuous transformation. On the other hand, it

is not a pathological situation either. The swiss roll manifold, for example, can be trivially

shown to meet all of these conditions.

In cases where neighborhood relationships must be temporarily violated in order

to “unfold” a manifold, it is often still reasonable to expect that the lowest valley in the

error surface will follow a continuous path through the error space, even if that valley does

not remain at zero. Non-continuous jumps in the error space correspond to “tearing” of a

manifold structure to instantly separate previously adjacent parts. Intuitively, this is not

typically a desirable behavior. Even in cases where the best transformation requires such

jumps in the error space, it is still likely that it will yet arrive at a good local optimum. It

should do no worse than techniques that simply use convex optimization. Further, necessary

rips in the manifold structure are not likely to be frequent events. If the system becomes

temporarily separated from the global optimum, it may yet be able to find the optimum
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again as the error surface continues to change. The global optimum is the only optimum that

is certain to remain a local optimum during the entire transformation.

3.3.6 Parameter Tuning

Although this algorithm has several parameters that could, in theory, be tuned to obtain

better results with a particular problem, we have not found that it is typically necessary to

do so. In the experiments reported in this paper, we have only adjusted k (the number of

neighbors), t (the number of target dimensions), and σ (the scaling rate). The parameters k

and t are common in all of the algorithms with which we compare. The scaling rate, however,

is unique to Manifold Sculpting. For most problems, rapid convergence can be obtained

using the value σ = 0.99, but for complex manifold topologies, a slower scaling rate, such as

σ = 0.999, may be necessary to give the manifold more iterations to unfold.

3.3.7 Estimating Intrinsic Dimensionality

The error heuristic used by Manifold Sculpting is an indicator of how well neighborhood

structure has been preserved. In cases where the intrinsic dimensionality of a problem is

not known a priori, the variance may be scaled out of the higher dimensions one at a time.

The error heuristic will then indicate how well the manifold structure is preserved into each

number of dimensions. In contrast with eigenvalues, this error heuristic will indicate the

component of non-linear variance in the manifold. When the error begins to climb rapidly,

the intrinsic dimensionality of the manifold has been subceeded. This feature is particularly

convenient for analysis in which the intrinsic dimensionality must be determined. When the

intrinsic dimensionality is known, however, as is the case with the experiments in this paper,

it is preferable for efficiency to scale all of the extra dimensions simultaneously.
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3.4 Empirical Analysis

We tested the properties of Manifold Sculpting with a wide variety of experiments and a range

of manifolds. Section 3.4.1 reports empirical measurements of accuracy using toy-problems

that have known ideal results. These results indicate that Manifold Sculpting is more accurate

than Isomap, LLE, HLLE, and L-MVU with these problems. Section 3.4.2 demonstrates

the capabilities of Manifold Sculpting using several image-based manifolds. Section 3.4.3

reports on an experiment with document-based manifolds. Section 3.4.4 discusses using

partial supervision, and training Manifold Sculpting in a pseudo-incremental manner.

3.4.1 Accuracy

Figure 3.2 (page 18) shows that Manifold Sculpting appears visually to produce results of

higher quality than LLE and Isomap with the Swiss Roll manifold, a common visual test for

manifold learning algorithms. Quantitative analysis shows that it also yields more precise

results than HLLE and L-MVU. Since the actual structure of this manifold is known prior to

using any manifold learner, we can use this prior information to quantitatively measure the

accuracy of each algorithm.

We define a Swiss Roll in 3D space with n points (xi, yi, zi) where 0 ≤ i < n

as follows: Let t = 8i/n + 2, xi = t sin(t), yi is a random number −6 ≤ yi < 6, and

zi = t cos(t). In 2D manifold coordinates, the corresponding target points are (ui, vi), such

that ui = sinh−1(t)+t
√
t2+1

2
and vi = yi. To emphasize the effect of poorly-sampled areas, we

also removed samples that fell within a star-shaped region on the manifold as shown in

Figure 3.2.

We created a Swiss Roll with 2000 data points and reduced the dimensionality to 2

with each of four algorithms. We tested how well the output of each algorithm aligned with

the target output values, (ui, vi), by measuring the mean squared distance from each point to

its corresponding target value. Since there is no guarantee how the results would be oriented,

we used the affine transformation that most closely aligned the results with the expected
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Figure 3.7: The mean squared error of four algorithms for a Swiss Roll manifold using a
varying number of neighbors k. The vertical axis is shown on a logarithmic scale. The
excessive memory requirement of L-MVU and HLLE limited the range of neighbors over
which we were able to test these algorithms, but L-MVU did very well with few neighbors.
Manifold Sculpting yielded the most accurate results when at least 12 neighbors were used.

results before measuring the mean squared distance. We then normalized the mean squared

error by dividing by λ, where λ is the square of the average distance between each point in

the target dataset and its nearest neighbor. Thus, a normalized mean squared error larger

than 1 would probably indicate that the results are significantly distorted, since the average

deviation of a point from its ideal location is more than the distance between neighboring

points.

Figure 3.7 shows the normalized mean squared distance between each transformed

point and its expected value. Results are shown with a varying number of neighbors k. Both

axes are shown on a logarithmic scale. With L-MVU, 44 landmarks (≈
√
n) were used.

The resource requirements of L-MVU became unreasonable after 9 neighbors, as they did
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Figure 3.8: The mean squared error of four algorithms with a Swiss Roll manifold using a
varying number of points. Both axes are shown on a logarithmic scale.

for HLLE after 48 neighbors. LLE and Manifold Sculpting could easily handle many more

neighbors, but neighbors begin to cut across manifold boundaries at that point. Isomap

yielded very poor results and is not shown. Manifold Sculpting did not yield good results

until at least 12 neighbors were used. This may indicate that L-MVU is a better choice when

so few samples are available that many neighbors would be unreasonable. With this problem,

L-MVU, HLLE, and Manifold Sculpting can all produce results that are very close to the

ideal results. Proportionally, however, the results from Manifold Sculpting are precise by

more than an order of magnitude over the next-best algorithm.

We repeated the experiment with the Swiss Roll manifold using a varying number of

points to sample the manifold. Figure 3.8 shows the results of this experiment. 18 neighbors

were used for LLE, HLLE, and Manifold Sculpting because these algorithms all did well with

this value in the previous experiment. For L-MVU, 6 neighbors were used to keep the resource
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Figure 3.9: A visualization of an S-Curve manifold.

requirements manageable, and because it did well with this value in the previous experiment.

We used the square root of the number of points (rounded down) for the number of landmarks.

The memory requirements for HLLE and L-MVU became unreasonable after 3175 points.

HLLE and L-MVU yielded very good results with this problem. When the manifold was

sampled with at least 500 points, however, Manifold Sculpting produced proportionally more

accurate results than the other algorithms. L-MVU yielded the best results when the manifold

was sampled with fewer points, but none of the algorithms yielded very good results with

fewer than 500 sample points. HLLE, L-MVU, and Manifold Sculpting all appear to exhibit

the trend of producing better accuracy as the sample density is increased.

To verify that these results were not peculiar to the Swiss Roll manifold, we repeated

this experiment using an S-Curve manifold as depicted in Figure 3.9. This manifold was

selected because we could also compute the ideal results for it by integrating to find the

distance over its surface. We defined the S-Curve points in 3D space with n points (xi, yi, zi)

where 0 ≤ i < n as follows: Let t = (2.2i−0.1)π
n

, xi = t, yi = sin(t), and zi is a random

number 0 ≤ zi < 2. In 2D manifold coordinates, the corresponding target points are (ui, vi),

such that ui =

∫ t

0

(√
cos2(w) + 1

)
dw and vi = zi. We measured accuracy in the same

manner described in the previous two experiments. These results are shown in Figure 3.10.
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Figure 3.10: The mean squared error of four algorithms for an S-Curve manifold using a
varying number of points. Manifold Sculpting consistently outperformed all other algorithms
on this problem, and is more than an order of magnitude better than HLLE, which is the
closest competitor. Both axes are shown on a logarithmic scale.

Again, results are not shown for L-MVU or HLLE with very large numbers of points due

to the demanding resource requirements of these algorithms. Consistent with the previous

experiment, L-MVU, HLLE, and Manifold Sculpting all produced very good results with this

simple manifold. The trends exhibited in these results were similar to those from the Swiss

Roll manifold, with Manifold Sculpting producing results that were proportionally better.

A test was also performed with an Entwined Spirals manifold as shown in Figure 3.11.

In this case, Isomap produced the most accurate results, even though it consistently had

the poorest results for all manifolds with an intrinsic dimensionality greater than 1. (See

Figure 3.12.) This can be attributed to the nature of the Isomap algorithm. In cases where

the manifold has an intrinsic dimensionality of exactly 1, a path from neighbor to neighbor
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Figure 3.11: A visualization of an Entwined Spirals manifold.

Figure 3.12: Mean squared error for five algorithms with an Entwined Spirals manifold.
Isomap does very well when the intrinsic dimensionality is exactly 1.

Figure 3.13: Images of a face reduced by Manifold Sculpting into a single dimension. The
values are shown here on two wrapped lines in order to fit the page. The original image is
shown above each point.

provides an accurate estimate of isolinear distance. Thus an algorithm that seeks to globally

optimize isolinear distances will be less susceptible to the noise from cutting across local
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Figure 3.14: Images of a hand reduced to a single dimension. The original image is shown
above each point.

corners. When the intrinsic dimensionality is higher than 1, however, paths that follow

from neighbor to neighbor produce a zig-zag pattern that introduces excessive noise into the

isolinear distance measurement. In these cases, preserving local neighborhood relationships

with precision yields better overall results than globally optimizing an error-prone metric.

Consistent with this intuition, Isomap yielded very accurate results in our other experiments,

reported hereafter, that involved a manifold with a single intrinsic dimension, and yielded the

poorest results with experiments in which the intrinsic dimensionality was larger than one.

3.4.2 Image-based manifolds

Many unsupervised learning problems do not have a corresponding set of ideal results. The

Swiss Roll and S-Curve manifolds are useful for quantitative analysis because expected results

can be computed a priori, but real-world applications are likely to involve many more than just

three dimensions. We therefore performed several experiments to demonstrate that Manifold

Sculpting is also accurate with problems that involve much larger initial dimensionality.

Figure 3.13 shows several frames from a video sequence of a person turning his head while

gradually smiling. Each image was encoded as a vector of 1, 634 pixel intensity values. No

single pixel contained enough information to characterize a frame according to the high-level

concept of facial position, but this concept was effectively encoded in multi-dimensional space.

This data was then reduced to a single dimension. (Results are shown on two separate lines

in order to fit the page.) The one preserved dimension could then characterize each frame

according to the high-level concept that was previously encoded in many dimensions. The dot

below each image corresponds to the single-dimensional value in the preserved dimension for

that image. In this case, the ordering of every frame was consistent with the ordering in the

37



Figure 3.15: A dataset was generated by translating an image over a background of noise.
Nine representative images are shown. Results from several algorithms using this dataset are
shown in Figure 3.16.

video sequence. Because the ideal results with this problem are not known, it is not possible

to compute the accuracy of these results. We therefore did not compare with other algorithms

using this problem, but the correctness of these results is somewhat visually apparent.

Figure 3.14 shows eleven images of a hand. These images were encoded as multi-

dimensional vectors in the same manner. The high-level concept of “hand openness” was

preserved into a single dimension. In addition to showing that Manifold Sculpting can work

with real-world data, this experiment also shows the robustness of the algorithm to poorly

sampled manifolds because these eleven images were the only images used for this experiment.

Again, the ideal results with this problem are not known, so no accuracy measurement is

given.

Another experiment involves a manifold that was generated by translating a picture

over a background of random noise as shown in Figure 3.15. This figure shows a sample of 9

images. The manifold was sampled with 625 images, each encoded as a vector of 2,304 pixel

intensity values. Because two variables (horizontal position and vertical position) were used

to generate the dataset, the data can be interpreted as sampling from a manifold with an
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Figure 3.16: A comparison of results with a manifold generated by translating an image over
a background of noise. 8 neighbors were used with HLLE, L-MVU, and Manifold Sculpting.
4 neighbors were used with LLE because it produced better results than with 8 neighbors.
49 landmarks were used with L-MVU. Results for Manifold Sculpting are shown with LLE
pre-processing using the default scaling rate σ = 0.99, and with only PCA pre-processing
using a slower scaling rate of σ = 0.999. The results from Manifold Sculpting are nearly
linearly separable.
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intrinsic dimensionality of two in a space with an extrinsic dimensionality of 2,304. Because

the background is random, the average distance between neighboring points in the input

space should be somewhat uniform, therefore the ideal reduced-dimensionality result can be

expected to occupy a space very close to square in shape. We, therefore, use this as a basis for

empirically measuring the quality of results. Quantitative measurements with this problem

may be a better indicator of the strengths of a manifold learning algorithm than the Swiss

Roll or S-curve manifolds because: 1) This problem involves reduction from high-dimensional

space, and 2) To our knowledge, highly accurate results have not yet been obtained with this

problem.

Figure 3.16 shows a comparison of results from various algorithms on this problem.

For increased visibility of the inherent structure, each vertex is shown connected with the

four nearest neighbors in the input space. Results are shown with PCA to demonstrate how

very non-linear this manifold is (see Figure 3.16.A). We tested the other algorithms with 4

and 8 neighbors (because the points lie on a grid-like structure), and report the best results

for each algorithm. LLE did better with 4 neighbors. The other algorithms did better with 8

neighbors.

To demonstrate the ability of Manifold Sculpting to benefit from the results of other

dimensionality reduction algorithms, we substituted LLE for the pre-processing (step 3 of

the Manifold Sculpting algorithm). These results, shown in Figure 3.16.E, were obtained

rapidly using the default scaling rate of σ = 0.99. The best results, however, were obtained

using a slower scaling rate (σ = 0.999). These results are shown in Figure 3.16.F. In this

case, we used the default PCA pre-processing. With this problem, it is necessary to use a

slower scaling rate when PCA is used for pre-processing so that the manifold has sufficient

time to unfold.

We empirically measured the quality of the results obtained in this experiment by

comparing results with points distributed evenly over a perfect square. These results are

shown in Figure 3.17. LLE and HLLE do poorly because their results tend to exhibit global
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distortions, which have a more significant impact on the mean squared error. L-MVU achieves

a normalized mean squared error less than 1. It exhibits a mixture of both global and local

distortions. The mean-squared-error of the result from Manifold Sculpting is more than an

order of magnitude smaller than that of L-MVU.

Another observation that can be made from the results shown in Figure 3.16.F is

that the results are approximately linearly separable. For example, if it were desirable to

classify these images into two classes such that class A contained all images in which the

picture of the Mona Lisa is adjacent to the top of the image, and class B contained all other

images, this could be done using the results from Manifold Sculpting with a single linear

division boundary. Since this dataset was designed to have predictable results, these classes

would only have pathological applications, but this demonstrates the significant potential of

Manifold Sculpting to create separability of intrinsic concepts from otherwise complex data.

With many problems, however, distances in observation space are not uniformly scaled

in relation to the intrinsic variables. For example, Figure 3.18A shows the results of using

Manifold Sculpting to reduce the dimensionality of a manifold generated by sliding a window

over a larger picture of the Mona Lisa. This result is not square because some parts of the

image exhibit different gradients than other parts. When the window slides over a region

with a larger gradient, a bigger distance is measured. In order to obtain results that more

correctly represent the intrinsic variables in this problem, we used a custom distance-metric

that normalized distances in local neighborhoods, such that each neighborhood represents a

uniform amount of total distance. This result is shown in Figure 3.18B. These values are a

better representation of the intrinsic values in this problem because they are less biased by

the irrelevant gradient in the images. This experiment used 1296 images, each represented as

a vector of 3675 continuous pixel-values.

In addition to supporting custom relationship metrics, Manifold Sculpting is also

flexible regarding the representation of intrinsic points. For example, if a subset of supervised

points is available, these points can be clamped with their supervised values while Manifold
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Sculpting operates, and Manifold Sculpting will naturally find values for the other points

that fit well in relation to the supervised points. This capability is useful for at least 3

potential applications: 1- It can be used to improve runtime performance. With several

problems we were able to measure as much as a 50% speedup when as few as 5% of the

points had supervised values. Since the supervised points are clamped with their known

values, they tend to act as a force that pulls the other points directly toward their final

destinations. 2- It can be used to align intrinsic values with the dimensional axes, or to

give the distances between them meaning with respect to a particular unit. This might be

useful, for example, if the intrinsic values are used to estimate the state of some system. 3-

It can be used to facilitate pseudo-incremental manifold learning. If, for example, points

arrive from a stream, pseudo-incremental manifold learning may be useful to update the

reduced-dimensional estimate for all of the points that have yet arrived. This is done in two

steps: First, Manifold Sculpting is applied with values clamped to all the points that have

known values. This rapidly computes values for the new incoming points. Second, Manifold

Sculpting is applied again with all points un-clamped, but starting in the location of their

reduced-dimensional values. This enables all of the points to be updated in consequence of

the new information, but also incurs very little computational cost since all points begin

already in nearly-optimal locations.

3.4.3 Document Manifolds

The utility of manifold learning algorithms for image processing applications has recently

been recognized, but this is certainly not the only field that deals with multi-dimensional data.

The Vector Space Model [Raghavan and Wong, 1986], for example, is commonly used in the

field of Information Retrieval to characterize web documents. Each web page is represented

as a large vector of term weights. The number of dimensions in the vector corresponds

to the number of unique word stems (about 57,000 in English), and the values in these

dimensions correspond to a term weight computed from the number of occurrences of the
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Figure 3.17: An empirical measurement of the error of the results shown in Figure 3.16.
Error was computed as the smallest mean squared error from points distributed evenly over
a square. An affine transformation was found to align results as closely as possible with the
square before error was measured. Results from Manifold Sculpting are more than an order
of magnitude better than the next closest competitor.
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Figure 3.18: A. Manifold Sculpting was used to reduce the dimensionality of a manifold
generated from a collection of 1296 images, each represented as a vector of 3675 continuous
pixel values. These images were generated by sliding a window over a larger picture of the
Mona Lisa. This result is not square because the sliding window creates a bigger change in
input distance when sliding over regions with a bigger gradient. B. A custom distance-metric
was used to normalize distance such that each neighborhood represents a uniform amount of
total distance. This result better represents the intrinsic variables of this problem.

term in a document. Search queries can be evaluated by finding the documents whose vector

has the closest angle with the vector of the query. This representation bears some striking

resemblances to the pixel representation used for processing images, so it seems likely that

similar results could be obtained by applying manifold learning to this field.

To test this hypothesis, we implemented a simple application for refining the results

obtained from a Google search. A typical search often yields many thousands of documents,

but users rarely have patience to look at more than the first few. Our application downloads

the first 100 documents, removes stop words, stems each term with the Porter stemming

algorithm [Porter, 1980], and represents the documents with the Vector Space Model. Next

it uses Manifold Sculpting to reduce the dimensionality of the vectors to a single dimension.

It then divides this dimension into two halves at the point that minimizes the sum variance

of the two halves. Finally it extracts three terms to represent each of the two clusters by

summing the vectors in the cluster and picking the three terms with the highest total weight.

In theory, these two groups of terms should reflect the most significant range of context found
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in the query results, and a user should be able to refine his or her query by selecting which of

the two halves is closer to the intended meaning of the query.

As an example, a query for the term “speaker” yielded for one set of terms “box”,

“amp”, and “off”, and for the other set “hit”, “baseball”, and “bat”. The first interpretation of

the term “speaker” probably comes from references to audio devices. Prior to performing this

experiment we did not know that this term had anything to do with baseball, but a search

for the refined query “speaker baseball” yields many documents with information about Tris

Speaker who was elected to the baseball hall of fame in 1937. Not all queries yielded such

distinctly separated results, but this is an area with potential for further research.

3.4.4 Semi-supervision

Manifold learning and clustering have many things in common. Clustering collections of

multidimensional vectors such as images, for example, is more effective when manifolds in

the data are taken into account [Breitenbach and Grudic, 2005]. Manifold learning and

clustering are both unsupervised operations. Unlike clustering however, which groups vectors

into a discrete number of buckets, manifold learning arranges them into a discrete number of

continuous spectra. In some sense, clustering is to manifold learning what classification is to

regression. It seems intuitive, therefore, that techniques which benefit clustering algorithms

may have a corresponding counterpart for manifold learning algorithms. Clustering algorithms

can be greatly enhanced with partial supervision [Demiriz et al., 1999]. Likewise, a small

modification to the Manifold Sculpting algorithm makes it possible to perform semi-supervised

manifold learning.

Semi-supervised clustering involves a subset of data points for which classification

values or hints about those values are provided. Semi-supervised manifold learning likewise

requires final values or estimated final values to be provided for a subset of the data points.

During scaling iterations (step 4 of the Manifold Sculpting algorithm), these points are

clamped to their supervised values. The unsupervised points are free to move, but will
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Figure 3.19: Manifold learning is faster when more points are supervised. (When most of the
points are supervised, the only significant cost is the neighbor-finding step of the algorithm.)

be influenced by their neighbors, some of which may be supervised. This results in more

efficient and potentially more accurate manifold learning. Figure 3.19 shows the amount of

time required to learn the intrinsically one-dimensional manifold for each of the four video

sequences with a varying percentage of supervised points. It can be observed in these results

that the first 20% to 50% of supervised points tend to produce noticeable improvements in

speed, but additional supervised points tend to make little difference.

In some cases data may not be available all at once. In such cases it may be desirable

to learn a manifold as the data becomes available from a stream [Law et al., 2004]. Pseudo-

incremental learning is naturally achieved with semi-supervised manifold learning. The

following two-step process is followed when new data points become available: First, the

old points are clamped to their known reduced-dimensionality values and the new points

are allowed to settle. Second, all points are unclamped, and the entire dataset is allowed
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to settle. The first step is very fast because most of the points are supervised. The second

step is also fast because the manifold is already unfolded, and all of the points are likely to

be very close to their final states. Significant computation is only required when new data

causes the overall structure of the manifold to change.

Often, semi-supervised clustering is performed by having human experts classify a

subset of the available data. When real values are required, however, it may only be reasonable

to ask human experts to provide vague estimates. For example, humans might be able to

easily sort a collection of images according to relevance to a particular topic. The sorted

images could be assigned sequential output values, and these values could be used as estimates

for the points in manifold coordinates. However, precise values may be difficult to obtain

initially. Fortunately, even estimated output values can be useful in semi-supervised manifold

learning. This benefit is exploited by first clamping estimated values to guide the unfolding

of the manifold, and then unclamping all of the points during later iterations so that more

precise refinements can be made to the data.

3.5 Conclusions

A significant contribution of this paper is the observation that the optimization step of

manifold learning is suitable to be solved using graduated optimization, a technique that can

rapidly find the global optimum with many otherwise-difficult optimization problems. We

demonstrated this by presenting a manifold learning algorithm called Manifold Sculpting,

which uses graduated optimization to find a manifold embedded in high-dimensional space.

The collection of experiments reported in this paper indicate that Manifold Sculpting

yields more accurate results than other well-known manifold learning algorithms for most

problems. We collected empirical measurements using a Swiss Roll manifold with varying

sample densities and with varying numbers of neighbors. We also tested with an S-Curve

manifold, an Entwined Spirals manifold, a manifold generated by translating an image over

a background of noise, and a few other manifolds. Isomap tends to be very strong when
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the intrinsic dimensionality of a problem is exactly 1, and L-MVU does well when very

few sample points are available, but in all other cases, Manifold Sculpting yielded the most

accurate results, and is typically at least an order of magnitude more accurate than the

closest competitor algorithm.

The results produced by Manifold Sculpting are robust to parameter choices, except

for the scaling rate. We showed that the default scaling rate (σ = 0.99) works well with most

problems, but that a slower scaling rate will yield good results with more complex problems.

We also demonstrated that Manifold Sculpting can benefit by pre-processing the data with

other dimensionality reduction algorithms. In many cases, this enables accurate results to be

obtained rapidly, without resorting to the use of a slower scaling rate.
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3.6 PCA for graduated optimization

This appendix section provides pseudo code for the align axes with principal components

function. This performs the same function as the axis rotation step of principal component

analysis, except that it preserves data in all dimensions while only aligning with the first t

principal components. This differs from regular PCA, which aligns data with the first few

principal components and then throws out all values in the remaining dimensions. With

Manifold Sculpting, it may be preferable to preserve these values because they represent

some component of the distances between points. Thus, this algorithm may be used instead

of regular PCA for preprocessing the data prior to applying Manifold Sculpting with the

slight advantage that this technique guarantees not to affect any of the distances in local

neighborhoods. This pseudo code is given in Figure 3.20.
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function align axes with principal components(P)
µ← compute mean(P)
for each pi,∗ ∈ P:

pi,∗ ← pi,∗ − µ
Q← copy of(P)

G← {̂i, ĵ, k̂, . . .} such that |G| = t
for k from 0 to t− 1

c← a random vector of size t
do 20 times:

v← zero vector of size t
for each qi ∈ Q:

v← v + (qi · c)qi
c← v

|v|
for each qi ∈ Q:

qi ← qi − (c · qi)c
a← Gk

b← c−(a·c)a
|c−(a·c)a|

φ← arctan(b·c
a·c )

for j from k to t− 1
u← a ·Gj

v ← b ·Gj

Gj ← Gj − ua
Gj ← Gj − vb
r ←

√
u2 + v2

θ ← arctan( v
u
)

u← r cos(θ + φ)
v ← r sin(θ + φ)
Gj ← Gj + ua
Gj ← Gj + vb

for each pi,∗ ∈ P:
for j from 0 to t− 1:

pij ← pi,∗ ·Gj + µj

Figure 3.20: Pseudo code for the align axes with principal components function. This per-
forms the same function as the axis rotation step of principal component analysis, except
this algorithm only aligns with the first |Dpreserved| principal components while preserving
data in all dimensions.
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Chapter 4

Decision Tree Ensemble: Small Heterogeneous Is Better Than

Large Homogeneous

Abstract: Using decision trees that split on randomly selected attributes is one

way to increase the diversity within an ensemble of decision trees. Another approach

increases diversity by combining multiple tree algorithms. The random forest approach

has become popular because it is simple and yields good results with common datasets.

We present a technique that combines heterogeneous tree algorithms and contrast

it with homogeneous forest algorithms. Our results indicate that random forests

do poorly when faced with irrelevant attributes, while our heterogeneous technique

handles them robustly. Further, we show that large ensembles of random trees are

more susceptible to diminishing returns than our technique. We are able to obtain

better results across a large number of common datasets with a significantly smaller

ensemble.

4.1 Introduction

Ensembles offer a simple yet effective technique for obtaining increased levels of predictive

accuracy by combining the predictions of many different learning algorithm instances [Hansen

and Salamon, 1990, Opitz and Maclin, 1999, Dietterich, 2000, Polikar, 2006]. However, such

improvements are predicated upon there existing some form of diversity among the elements

of the ensemble [Sollich and Krogh, 1996, Kuncheva and Whitaker, 2003]. Indeed, if every
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instance in the ensemble behaves nearly the same way, little is achieved by combining their

predictions.

Decision trees are particularly well-suited for ensembles because they are fast and

unstable. Hence, it is often possible to create synergy within decision tree ensembles or

forests. A popular technique for promoting variance in decision tree forests is to use trees

that randomly choose on which attributes to divide the data [Ho, 1995]. In sufficiently large

ensembles, this technique can yield better accuracy than standard entropy-reducing decision

trees on many datasets because it creates more variance within the models. Breiman showed

that bagging is particularly effective with forests of random decision trees [Breiman, 2001].

On the downside, however, our results indicate that random trees yield poor results on data

with many irrelevant attributes.

In this paper, we contrast the random forest algorithm with another ensemble technique

that combines multiple tree algorithms using cross-validation selection. We show that this

technique both has a higher ceiling of diminishing returns and is more robust to irrelevant

features than homogeneous tree ensembles. Heterogeneity in our ensembles is achieved

through a combination of entropy-reducing decision trees, which build axis aligned decision

boundaries, and a new class of decision trees, known as mean margins decision trees (MMDT),

which build oblique decision boundaries.

The paper is organized as follows. Section 4.2 briefly reviews significant related work.

In Section 4.3, we describe the mean margins decision tree learning algorithm and the hybrid

cross-validation decision tree learning algorithm which may be obtained by combining the

mean margins decision tree learning algorithm with the standard entropy-reducing decision

tree learning algorithm. Section 4.4 presents a thorough analysis of the resulting heterogeneous

ensemble learning algorithm. Finally, Section 4.5 concludes the paper.
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4.2 Related Work

The MMDT algorithm we introduce here uses linear combinations of inputs to define the

decision boundaries of its induced model trees. Such trees were first discussed in [Breiman

et al., 1984] and later implemented in a number of algorithms, such as Multivariate Decision

Trees [Brodley and Utgoff, 1995], Oblique Decision Trees [Murthy et al., 1994], and Perceptron

Decision Trees [Utgoff, 1989].

Linear combination trees offer significant flexibility over trees that only divide data

with axis-aligned boundaries. Unfortunately, this flexibility tends to be a hindrance more than

a benefit. Training a perceptron tree, for example, involves optimization in a very non-convex

heuristic space. Further, there is a strong tendency for perceptron trees to use their extreme

flexibility to overfit the training data. MMDT, on the other hand, is asymptotically as efficient

as the well-known entropy-reducing decision tree learning algorithm. It is also parameterless

and tends to produce good results with many datasets.

Although a complete review is outside the scope of this paper, much of the research

involving ensemble methods is clearly relevant to our work (e.g., see [Dietterich, 2000, Brown

et al., 2005, Freund and Schapire, 1995, Dietterich, 2002]). Of particular interest is work

on diversity in ensembles. The need for diversity in ensemble is well known and has been

the object of many studies. Many techniques have been proposed from bagging [Breiman,

1996] to stacking [Wolpert, 1992] to mixture of experts [Jacobs et al., 1991] to random forests

[Breiman, 2001], to COD-based approaches [Peterson and Martinez, 2005], to name only

a few. A recent survey of techniques for creating diversity in ensemble is in [Brown et al.,

2005]. We use the term homogeneous to refer to techniques that use a single algorithm and

achieve diversity through some form of variability in the data (e.g., randomization), and we

use the term heterogeneous to refer to techniques that achieve diversity through the use of

multiple algorithms. A thorough comparison of randomization-based decision tree ensemble

methods is in [Banfield et al., 2007]. Our approach is heterogeneous and is compared with

one well-known homogeneous approach, namely random forests.
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4.3 Mean Margins Decision Tree Learning

We first describe a new decision tree learning algorithm called Mean Margins Decision Tree

(MMDT) learning, which builds oblique decision boundaries. The MMDT algorithm is

designed to be simple, efficient, and free of parameters. It is, therefore, well-suited for use in

ensembles. Suppose we have a set of patterns, P , for a binary classification problem such

that PT is the subset of patterns of class true, and PF is the subset of patterns of class false.

Further, suppose all patterns are vectors of real values.

function build tree(P )
~µ, ~ν ← choose decision boundary(P )
Pleft, Pright ← divide data(~µ, ~ν, P )
if |Pleft| == 0

return new LeafNode(Pright)
if |Pright| == 0

return new LeafNode(Pleft)
nodeleft ← build tree(Pleft)
noderight ← build tree(Pright)
return new InteriorNode(nodeleft, noderight)

function choose decision boundary(P )
~µF ← 1

|PF |
∑

~p∈PF
~p

~µT ← 1
|PT |

∑
~p∈PT

~p

~µ← ~µF+~µT
2

~ν ← ~µT − ~µF
return ~µ, ~ν

function divide data(~µ, ~ν, P )
Pleft ← {}
Pright ← {}
for each ~p ∈ P

if (~p− ~µ) · ~ν ≥ 0
Pright ← Pright + ~p

else
Pleft ← Pleft + ~p

return Pleft, Pright

Figure 4.1: MMDT Learning Algorithm
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At a high level, an MMDT is constructed in a manner very similar to that of any

other decision tree, as shown in Figure 4.1. The difference is that the MMDT algorithm

chooses decision boundaries in the form of linear combinations of inputs that maximize the

margins between the means of PT and PF , as illustrated in Figure 4.2.

Figure 4.2: Margin Maximization

Of course, not all classification tasks have exactly two classes and only real-valued

inputs. However, the MMDT algorithm is easily extended to handle nominal attributes,

and any number of classes. To handle nominal attributes, we represent each value as an

orthogonal dimension. For example, suppose some nominal attribute ranges over the values

{red, green, blue}, and some pattern contains the value v = red. We would represent this

value with three real values < 1, 0, 0 >. These values may be thought of as a categorical

distribution of confidence over the nominal values. (Note that this technique also naturally

provides a mechanism for handling missing nominal values: just assign equal confidences to

each value, e.g., < 0.33, 0.33, 0.33 >.) To convert back to a nominal value, just find the value

with the maximum confidence.

To handle more than two classes, we use the following technique. If class labels are

nominal, they are also converted to real vectors as per the above procedure, such that L is the

set of real vector labels (one for each pattern in P ). Each time before choose decision boundary

is called, we first divide P into PT and PF in the following manner:
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function compute 1st principal component(L)
for i = 1 to d
~νLi ← random standard normal()

~νL ← ~νL
|~νL|

do 10 times
~α← 0d
for each ~l ∈ L

~α← ~α + ((~l − ~µL) · ~νL)(~l − ~µL)
~νL ← ~α

|~α|

Figure 4.3: Computing 1st Principal Component

1. Compute the mean ~µL and first principal component ~νL of L.

2. For each ~l ∈ L, if (~l− ~µL) · ~νL ≥ 0 then PT contains patterns with label ~l, otherwise PF

contains patterns with label ~l.

Thus, the MMDT algorithm can easily work with multiple classes, including continuous labels.

For completeness, the pseudocode, derived from [Roweis, 1998], to quickly compute the first

principal component about the mean of L in d dimensions is shown in Figure 4.3. In some

rare cases, more iterations may be required to obtain a precise estimate of the first principal

component, but for this algorithm an imprecise estimate will work just fine, so ten iterations

are sufficient.

As an illustration of MMDT’s performance in complex environments, we design the

following simple interpolation task. Of course, better techniques for image interpolation

exist. The purpose here is only to assist an intuition of the workings of MMDT. We create a

training set with one pattern per pixel from a small 20x20 pixel image. We then evaluate

at sub-pixel positions to interpolate a 160x160 image. We compare bagged MMDT with a

random forest of standard entropy-reducing decision trees (ERDTs). The results are shown

in Figure 4.4. Note how bagged MMDT is better able to follow non-axis-aligned contours.

As it turns out, the MMDT algorithm is not as effective overall as ERDT learning for

common classification tasks, but MMDT tends to perform well in many cases where ERDT
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Figure 4.4: MMDT vs RDT Interpolation

does poorly. On a set of 43 common datasets from the UCI repository [Asuncion and Newman,

2007], ERDT achieves higher predictive accuracy (measured by 5x2 cross-validation) than

MMDT on almost two thirds (26 out of 43) of the datasets. However, MMDT appears to

cover an important deficiency in the remaining one third. MMDT computes mean values in

order to choose its decision boundaries. Mean values can be estimated with more accuracy

when there is plenty of data. It seems intuitive, therefore, that the MMDT algorithm might

do well with datasets that densely sample their input space.

To test this notion, we compute the sample density of each dataset as the product of

the arity of each attribute divided by the number of patterns. Since there is no concept of

arity with continuous values, we use a value of 5 for continuous attributes, which is close to

the average arity of nominal values in the datasets we consider. In a pairwise comparison

between bagged MMDT (size 100) and bagged ERDT (size 100) across only the densest half

of the datasets, MMDT performs better than ERDT on 45.5% (10 out of 22) of the datasets.

On the densest quarter, MMDT does best on 72.7% (8 out of 11) of the datasets, and on
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the densest eighth, it also does best on 83.3% (5 out of 6) of the datasets. Hence, sample

density does seem to characterize a significant portion of the strength of MMDT. There also

remain 7 out of 21 datasets (33.3%) among the sparsest half of the datasets on which bagged

MMDT outperforms bagged ERDT.

4.4 Decision Tree Ensemble Learning

We will refer to a bagged ensemble of 100 random decision tree (RDT) instances as

“100×RDT”, to a bagged ensemble of 100 ERDT instances as “100×ERDT”, and likewise for

other algorithms.

We first compare the predictive accuracy of three bagged ensembles: 100×RDT,

100×ERDT, and 100×MMDT. We measure predictive accuracy on 43 common datasets

from the UCI repository [Asuncion and Newman, 2007] using 5x2 cross-validation (5x2CV).

Our choice of 5x2CV, rather than the somewhat more popular 10-fold cross-validation, is

motivated by recent results which suggest that 5x2CV yields lower type II error than 10-fold

cross-validation [Demsar, 2006]. In this experiment, each ensemble is homogeneous in that it

contains multiple instances of just one algorithm. The results are shown in Table 4.1. The

column “Baseline” corresponds to a majority learner that chooses the most common class. It

is shown in order to contrast the effectiveness of the various ensemble techniques. 100×RDT

is the most accurate with the most (17) datasets. RDTs are particularly effective at creating

diversity within the ensemble, so this result emphasizes the importance of having model

diversity. 100×ERDT does best on 13 datases, while 100×MMDT does best on 12 datasets.

One dataset has no clear winner.

Given the complementary nature of the strengths of ERDT and MMDT as discussed

above, it would seem that performance could be further improved by building heterogeneous

ensembles. Rather than combining several ERDTs and MMDTs, we first design the following

simple, cross-validation-based decision tree learning algorithm, which we refer to as CVDT

(Cross-Validation Decision Tree).
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1. Perform 1x2CV on the training set with ERDT

2. Perform 1x2CV on the training set with MMDT

3. Select the algorithm that performed best and train on full training set

We then create heterogeneous ensembles of CVDTs through bagging. When one of the two

algorithms (ERDT or MMDT) is clearly better than the other for a particular problem, this

is equivalent to a bagged ensemble of that model. When both algorithms achieve similar

accuracy, the bagged ensemble will contain a mixture of both algorithms in proportion to the

number of times that each achieved better accuracy during cross-validation.

In and of itself, building a heterogeneous ensemble is not that novel, and although

training a CVDT requires more computation than training an ERDT or an MMDT, this

cost is only required at training time. Evaluation with a CVDT is as efficient as the model

that it selects. Furthermore, we will show shortly that, in the context of ensemble learning,

significantly smaller ensembles of CVDTs may be used, that achieve higher accuracy and

better tolerance to noise than much larger ensembles of ERDTs or random forests, with an

overall smaller computational footprint.

We compare ensembles of ERDTs and RDTs with ensembles of bagged CVDTs. A

simple analogy motivates this design. A bagged ensemble of ERDTs may be analogous to a

panel of expert medical doctors that all graduated from the same university. An ensemble of

RDTs may be analogous to a panel of novices that dropped out of medical schools from all

over the world. Even though each novice may have less talent than any one of the experts,

the diversity in this group may enable them to produce a better combined diagnosis. This

may explain why ensembles of RDTs can outperform ensembles of ERDTs. It would seem,

therefore, that an ideal panel of medical doctors would contain both a significant amount of

diversity and expert talent. We seek this balance by using a bagged ensemble of CVDTs.

Each CVDT contains only algorithms that build their model with deliberate divisions, but

diversity is also enhanced (in addition to the diversity injected as part of the bagging ensemble

technique) by the utilization of more than one algorithm.
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Here, we consider bagged ensembles of 1,000 ERDTs and 1,000 RDTs with bagged

ensembles of only 100 CVDTs. The choice of 1,000 for ensembles of ERDTs and RDTs is

rather standard (e.g., see [Banfield et al., 2007]). The results are shown in Table 4.2.

These results indicate that a bagged ensemble of CVDTs has a higher ceiling of

diminishing returns than much larger ensembles of RDTs or ERDTs. Furthermore, despite

having one tenth the size, the much smaller ensemble of 100×CVDT still yields somewhat

higher accuracy on average, and wins outright over both 1, 000×ERDT and 1, 000×RDT

on 15 of the 43 datastets. On the 16 datasets for which 100×CVDT looses out to both

competitors, the loss is usually rather insignificant for at least one of them. Again, these

results are obtained at a much lower computational cost since 100×CVDT builds only 500

models (200 ERDTs, 200 MMDTs and 100 CVDTs) rather than the 1,000 required by the

other approaches.

In addition to accuracy, we look at how well our proposed ensemble technique handles

irrelevant attributes. This property is often ignored in the analysis of many algorithms because

popular collections of data tend to contain only attributes that have a fairly significant degree

of relevance to the output class. Irrelevant attributes, however, are becoming more and more

prevalent as the ease with which data can be collected gives rise to a “let us collect everything

we can and worry about its value later” kind of attitude in many machine learning and data

mining applications.

For purposes of experimentation, irrelevant attributes are not difficult to generate.

We inject varying numbers of attributes containing Gaussian noise into several common

datasets. For each dataset, we measure the predictive accuracy of 100×RDT, 100×ERDT,

100×MMDT, and 100×CVDT. Figure 4.5 shows results with the vowel dataset. Other

datasets yield very similar trends, so only vowel is shown here as a representative. Note that

the horizontal axis is shown on a logarithmic scale, so the right side of the chart represents a

broader domain than the left side.

60



Figure 4.5: Irrelevant Attributes on Vowel

Both 100×ERDT and 100×MMDT handle irrelevant attributes very well. Both

algorithms exhibit a nearly linear decrease in accuracy with an exponential increase in the

number of irrelevant attributes. It follows, as expected, that the CVDT algorithm, which

selects between these two algorithms, also handles irrelevant attributes well. The accuracy of

100×RDT, on the other hand, begins to degrade very quickly after the majority of attributes

are irrelevant with respect to class labels.

A common justification for randomly selecting decision boundaries is that this creates

models with more variance, and if it randomly decides to split on an irrelevant feature, it

may still split on a relevant feature deeper in the tree. As the number of irrelevant features

becomes large, however, it constructs models with less and less total relevant information.

Consequently, algorithms that identify relevant decision boundaries tend to handle irrelevant

attributes better. We, therefore, suggest that utilizing a diversity of algorithms, such as the

one proposed here, is a better technique for inducing variance within an ensemble.
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4.5 Conclusion

Although RDT may be somewhat effective at producing desirable model variance within an

ensemble, heterogeneous ensembles that select from among multiple models can outperform

such homogeneous ensembles. Furthermore, ensembles of RDT are not robust to irrelevant

attributes.

The MMDT algorithm introduced here is intuitive, efficient, simple to implement and

parameterless. It is, therefore, well-suited for use in ensembles. Although, by itself, MMDT is

often less accurate than ERDT, MMDT tends to do well with a different set of problems than

ERDT. Using cross-validation selection between ERDT and MMDT creates a particularly

powerful model. Our results demonstrate that very small ensembles of such cross-validation

decision trees (100 vs. 1,000) can outperform very large homogeneous ensembles of RDT

both in terms of accuracy and tolerance to irrelevant attributes.
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Table 4.1: Homogeneous Ensembles
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Table 4.2: Heterogeneous Ensemble vs. Homogeneous Ensembles
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Chapter 5

Robust Manifold Learning With CycleCut

Abstract: Many manifold learning algorithms utilize graphs of local neighborhoods

to estimate manifold topology. When neighborhood connections short-circuit between

geodesically distant regions of the manifold, poor results are obtained due to the

compromises that the manifold learner must make to satisfy the erroneous criteria. Also,

existing manifold learning algorithms have difficulty unfolding manifolds with toroidal

intrinsic variables without introducing significant distortions to local neighborhoods.

An algorithm called CycleCut is presented which prepares data for manifold learning by

removing short-circuit connections, and by severing toroidal connections in a manifold.

5.1 Introduction

In the last decade, manifold learning has become a significant component of machine learning,

data mining, vision, and robotics. In machine learning and data mining, manifold learning

can be used to reduce dimensionality, which otherwise presents a significant challenge for

many algorithms. In vision and robotics, manifold learning is used to reduce a sequence of

images to a corresponding sequence of “intrinsic variables”, which can be used to estimate

the state from which the images were obtained.

Many manifold learning algorithms, including Locally Linear Embedding, Laplacian

Eigenmap, Hessian LLE, Local Tangent Space Alignment, Maximum Variance Unfolding,

Manifold Sculpting, and others, rely on graphs of local neighborhoods to estimate manifold
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topology. These algorithms seek to “unfold” a collection of samples from the manifold to

occupy fewer dimensions, while preserving distances (or other relationships) between points

in local neighborhoods. The quality of the results obtained from these algorithms is limited

by the quality of the neighborhood graphs. If the local neighborhoods contain connections

that short-circuit across manifold boundaries, the manifold learner will seek a compromise

embedding that satisfies each neighborhood relationship with varying degree, including the

short-circuit connection. Such compromise solutions constitute poor results.

We present an algorithm called CycleCut, which identifies and “cuts” the neighborhood

connections that short-circuit across the manifold. In contrast with existing algorithms,

CycleCut efficiently finds a minimal set of connections for removal such that there are no

topological holes represented in the manifold. It guarantees not to segment the graph, and

under common conditions (which we define in Section 5.3.1), it also guarantees to remove

all short-circuiting connections. Even when these conditions do not hold, it tends to exhibit

desirable behavior for improving the results of manifold learning. This paper is layed out

as follows: Section 5.2 reviews related work. Section 5.3 presents the CycleCut algorithm.

Section 5.4 gives an analysis of this algorithm, including a complexity analysis, and empirical

results. Section 5.5 concludes by discussing future work.

5.2 Related work

It has long been known that manifold learning algorithms have difficulty when local neigh-

borhood connections short-circuit (or shortcut) across the manifold [Balasubramanian and

Schwartz, 2002, Varini et al., 2006]. A simple solution is to use smaller local neighborhoods,

but this risks breaking connectivity, and often reduces the quality of results from manifold

learning.

A better approach to mitigate this problem involves adaptively selecting local neigh-

borhoods [Wei et al., 2008]. This can make the neighborhood graphs more robust to difficult

topologies, but it cannot handle the case where the closest neighbor of a point cuts across
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the manifold. An approach called manifold denoising [Hein and Maier, 2006] has been

used to reduce noise in the data, and thus decrease the risk of shortcut connections. This

technique, however, does directly seek to remove shortcut connections, and does not provide

any guarantees.

Perhaps the most effective method currently used for identifying shortcut connections

is based on Edge Betweenness Centrality (EBC) [Brandes, 2001]. EBC is a metric that counts

the number of times that the pair-wise shortest paths between every pair of points pass over

each edge. Because shortcut connections join geodesically distant regions of the manifold

(by definition), they tend to have higher EBC values than other edges [Cukierski and Foran,

2008]. The drawbacks of this approach are that it sometimes removes edges that are not

shortcuts, and it provides no inherent stopping criteria, requiring that heuristics be used

to decide when shortcut edges have been removed. By contrast, we show that graphs with

shortcut connections necessarily contain large cycles, and CycleCut guarantees to remove a

minimal set of edges to remove all large cycles in the graph.

5.3 CycleCut

The CycleCut algorithm is inspired by max-flow/min-cut methods for graph partitioning.

These methods identify the minimal cut to partition a graph by simulating flow across the

graph in order to identify the minimal set of edges that limit the flow as illustrated in

Figure 5.1. The max-flow min-cut theorem ensures that a cut which removes only the limiting

edges is optimal with respect to minimizing the sum capacity of the cut edges [Ford and

Fulkerson, 1962].

Instead of simulating flow across a graph, CycleCut simulates flow around a topological

hole in order to find a minimal cut that breaks the cycles that enclose the hole, as illustrated

in Figure 5.2.

There are three common cases when topological holes occur in sampled manifolds:

shortcut edges, toroidal intrinsic variables, and unsampled regions. These cases are illustrated
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Figure 5.1: Max-flow/min-cut methods simulate flow across a graph to identify a minimal set
of edges that limit the flow.

Figure 5.2: CycleCut simulates flow around a topological hole to identify a minimal set of
edges that limit the flow.

in Figure 5.3. We will describe these cases using an example of a robot which uses a camera

to explore a park. The images that this robot obtains with its camera may be considered

to be samples on a manifold. If these samples are “well-behaved”, manifold learning can be

used to obtain a sequence of intrinsic variables that correspond with the sequence of images.

These intrinsic variables will include a representation of the robot’s estimated position within

the park, which would be useful information for many tasks.

Case 1: Suppose there are two benches in this park with similar appearance. Images of

these benches would constitute samples on the manifold with a large geodesic distance, but a

small observed distance. Thus, the neighborhood graph of these samples will contain shortcut

connections between these observations. These shortcut connections create a topological

hole in the sampled manifold. CycleCut will remove the minimal set of edges, such that the

topological hole is eliminated. This enables the manifold to be learned without trying to

preserve superfluous distances between points.
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Case 2: Suppose that the robot has the ability to rotate yaw-wise. Because rotation

inherently repeats, the manifold sampled by the robot’s images will connect to itself to form

an open cylinder topology. Such manifolds cannot be projected into their tangent-space

dimensionality without either introducing distortions or breaking continuity. If the cylinder

is tall, then using distortion is a particularly poor solution. CycleCut finds a minimal break

in continuity to enable the manifold to be unfolded with little distortion. When CycleCut is

not used, resulting points are crowded together near the inner circumference and stretched

apart near the outer circumference. Distortion-free estimates of a state space are particularly

important for planning purposes because the effectiveness of generalization is limited by the

consistency within the representation of state.

Case 3: Suppose there is a large pond in the park into which the robot wisely does

not advance. This creates an unsampled region which appears to be a topological hole in the

manifold, even though the true manifold is continuous. In this case, it would be better not to

use CycleCut prior to manifold learning because it is desirable to preserve the unsampled

hole as an artifact in the results. If CycleCut is used in this case, it will cut along the shortest

path that connects the unsampled region with the outside area. This cut is superfluous, but

it will leave a larger amount of edges intact to define the manifold structure. The impact

that such a superfluous cut will have on results depends on how much “load” or “tension” is

represented in the cut edges. Fortunately, unlike case 2, case 3 typically involves edges that

carry little such tension, so results are generally degraded very little. Thus, if case 1 or case

2 is known to also exist in a sampled manifold, or if the nature of a collection of samples is

unknown, we recommend using CycleCut prior to manifold learning because the potential

cost is low, while the potential benefit is high.

If there are no large sample holes, CycleCut has no effect on results.
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Figure 5.3: Case 1: For manifolds with a topological hole due to shortcut edges, CycleCut
reduces distortion in the results. Case 2: For manifolds with topological holes due to toroidal
intrinsic variables, CycleCut reduces distortion at the cost of continuity in the results. Case
3: For manifolds with topological holes due to unsampled regions, CycleCut has little effect
on results.

5.3.1 The CycleCut algorithm

In graph theory, a chord is an edge that connects two non-adjacent vertices in a cycle. Cycles

with no chords are called induced cycles, chordless cycles, or holes. We generalize the notion
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Figure 5.4: This graph contains 3 cycles. All 3 of them are chordless, but only two of them
are atomic.

function CycleCut(V,E) Comments
λ← 12 Default cycle length threshold

1. for each {a, b} ∈ E do: Wa,b ← 1 Initialize edge capacities
R← empty list R stores removed edges
loop: For each large atomic cycles

2. C ← find large atomic cycle(V,E, λ) See Figure 5.6
if C = null: If no large atomic cycles

break Exit the loop. Go to *
3. h← min{a,b}∈CWa,b Find the bottle-neck in the cycle
4. for each {a, b} ∈ C: For each edge in the cycle

Wa,b ← Wa,b − h Reduce the remaining capacity
5. if Wa,b = 0: If the edge is fully saturated

remove {a, b} from E Cut the edge
append {a, b} → R Remember the removed edges

6. continue Go to the start of the loop
7. for each {a, b} ∈ R: * Repair unnecessary cuts

add {a, b} → E Tentatively restore the edge
C ← find large atomic cycle(V,E, λ) See Figure 5.6
if C 6= null: If the edge creates a cycle

remove {a, b} from E Remove it again

Figure 5.5: Pseudo-code for the CycleCut algorithm. V is a set of vertices. E is a set of edges.
(For convenience, an implementation of CycleCut is included in the Waffles [Gashler, 2011]
machine learning toolkit, and a switch to invoke it has been integrated with each manifold
learning algorithm in that toolkit.)

of a chord by defining an n-chord to be a path of length n which connects two vertices in a

cycle, where n is less than the length of the shortest path on the cycle between the vertices.

We refer to a cycle with no n-chords as an atomic cycle. For example, the graph shown in

Figure 5.4 contains 3 chordless cycles, but only two of them are atomic cycles.
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The problem of finding large holes in a graph (as defined by a large chordless cycle)

has been well-studied [Spinrad, 1991, Nikolopoulos and Palios, 2004]. For the application

of preprocessing high-dimensional data for manifold learning, however, large atomic cycles

are better indicators of topological holes than large chordless cycles. In high-dimensional

space, irregularly distributed samples frequently create sub-structures like the one shown

in Figure 5.4. If only 1-chords are considered, then large cycles with n-chords (n > 1) will

be falsely interpreted to indicate that there is a topological hole in the graph, resulting in

unnecessary cuts.

Pseudo-code for the CycleCut algorithm is given in Figure 5.5. This algorithm can be

briefly summarized as follows:

1. Equip each edge with a capacity value.

2. Find a large atomic cycle, C, else go to Step 7.

3. Find the smallest capacity, h, of any edge in C.

4. Reduce the capacity of every edge in C by h.

5. Remove all edges with a capacity of zero.

6. Go to Step 2.

7. Restore all removed edges that do not create a large atomic cycle when restored.

The first step of CycleCut equips each edge with a “capacity” value that indicates the

a priori confidence that it represents a good neighbor connection. In this paper, uniform

capacities are used, but non-uniform capacities may be used if additional information is

available. The second step finds a large atomic cycle in the graph. (We note that this step

could be modified, such that any other undesirable structure would be identified and removed

from the graph, but in this paper, we are only interested in removing large atomic cycles.)

Section 5.3.2 gives a detailed description of how large atomic cycles are identified. Step 3

finds the minimum capacity, h, of any edge in the large atomic cycle. Step 4 simulates flow by

reducing the remaining capacity of every edge in the large atomic cycle by h. Step 5 removes

all edges that have become fully saturated. These edges are stored in a list, R. Steps 2

72



through 5 are repeated until there are no more large atomic cycles in the graph. Finally, Step

7 restores any edges that were unnecessarily removed in step 5. Each edge in R is tentatively

restored to the graph. If restoring the edge creates a large atomic cycle, then it is removed

again. The resulting cut is guaranteed to be minimal with respect to the sum of capacity

values, such that all atomic cycles with a cycle length ≥ λ are broken.

function find large atomic cycle(V,E, λ) Comments
Q← empty queue; S ← ∅; T ← ∅ S, T = visited vertices, edges
choose a random vertex, v0 from V Pick a random seed point
enqueue v0 → Q; add v0 → S Seed the outer BFS queue
while |Q| > 0: Do the outer breadth-first-search
. dequeue a← Q Visit the next vertex
. for each neighbor b of a: Follow every edge
. if b ∈ S: If a cycle is detected
. . Pb ← null P = parent vertices
. . I ← empty queue; U ← empty set U =vertices visited by inner BFS
. . enqueue b→ I; add b→ U Seed the inner BFS queue
. . while |I| > 0: Do the inner breadth-first-search
. . dequeue c← I Visit the next vertex
. . for each neighbor d of c: Follow every edge
. . if d /∈ U and Ec,d ∈ T : Limit the inner BFS
. . Pd ← c Store the parent of every vertex
. . enqueue d→ I; add d→ U Advance the inner BFS
. . if d = a: If an atomic cycle is found
. . Y ← empty list Y = vertices in the atomic cycle
. . while d 6= null: Build the list of vertices
. . . append d→ Y Add to the list
. . . d← Pd Advance to parent vertex
. . if |Y | ≥ λ then return Y Return the large atomic cycle
. . else break twice Exit inner BFS. Go to *
. else If b has not been visited before
. . enqueue b→ Q; add b→ S Advance the outer BFS
. add Ea,b → T * Flag this edge as visited
return null There are no large atomic cycles

Figure 5.6: Pseudo-code to find an atomic cycle with a cycle length ≥ λ edges in a graph
comprised of vertices V , and undirected edges E.
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5.3.2 The find large atomic cycle routine

Large atomic cycles are found by iterating over all the atomic cycles in the graph, and

returning when one with a cyclelength ≥ λ is found. Pseudo-code for this routine is given in

Figure 5.6. The atomic cycles in a graph are enumerated using a breadth-first-search (BFS)

nested within another BFS. We refer to these as “the outer BFS”, and “the inner BFS”. The

purpose of the outer BFS is to define a region in which the inner BFS is constrained during its

search. Whenever the outer BFS detects a cycle (by finding an edge that connects to a vertex

that it has already discovered), the inner BFS begins searching from that point. The inner

BFS is only allowed to follow edges that the outer BFS has already followed (not including

the edge that detected the cycle). The inner BFS terminates when it finds a cycle because

subsequent cycles that it would discover would either be the same size, or non-atomic.

Proof of correctness

We now give a proof that this routine will find an atomic cycle with a cycle length ≥ λ, if

some atomic cycle C, |C| ≥ λ, is reachable from the seed point. Let e be the last edge in C

to be traversed by the outer BFS, and let T be the set of edges that had been traversed by

the outer BFS just before e was traversed. When the outer BFS traverses e, the destination

vertex of e is discovered for at least the second time. This event triggers the inner BFS to

find a shortest path, P , from one vertex of e to the other, following only edges in T . Let

B ≡ P ∪{e}. B must not have any n-chords, or else the inner BFS would have arrived at the

vertex earlier by cutting across the n-chord. If |B| = |C|, then B satisfies the proof, whether

or not B ≡ C, and the routine returns. To complete the proof, we show that “|B| 6= |C|”

is an impossible condition. If |B| > |C|, then the inner BFS would have found C first, so

B ≡ C, which is a contradiction. If |B| < |C|, then let A ≡ (B ∪ C)\(B ∩ C), where “\”

denotes exclusion. A must have been discovered previously, or else e would not close both B

and C. Further, A must be an atomic cycle, or else either B or C would have already been
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closed. If |A| ≥ |C|, then |A| ≥ λ, so the routine would have returned when it found A. If

|A| < |C|, then A∩B is an n-chord of C, which contradicts the assumption that C is atomic.

5.4 Analysis and validation

In this section, we analyze the CycleCut algorithm. In Section 5.4.1, we demonstrate that it

is easy to find a good value for λ. In Section 5.4.2, we give a complexity analysis of CycleCut.

In Section 5.4.3, we demonstrate the use of CycleCut to remove shortcut connections. In

Section 5.4.4, we demonstrate the use of CycleCut to unfold a manifold with a torroidal

intrinsic variable.

5.4.1 The threshold

Shortcut edges will always create a large atomic cycle because, by definition, they connect

geodesically distant regions of the manifold. As demonstrated in Figure 5.3 Case 3, it is

typically not a problem if a few good connections are cut, but it can cause significant problems

if bad connections are not cut. Thus, a good value for λ need only be smaller than the cycles

caused by shortcut edges. To show that CycleCut is very robust to the value of λ, we sampled

a square region of 2D space with 106 uniformly distributed random points, and connected

each point with its 10-nearest neighbors. (Many manifolds can be viewed as an embedding of

this or a similar structure in higher-dimensional space.) We measured the distribution of

the cycle lengths of the atomic cycles in this structure. Figure 5.7.A shows the cumulative

distribution, with atomic cycle lengths along the horizontal axis and the portion of atomic

cycles along the vertical axis. We repeated this experiment with a variety of conditions.

In Figure 5.7.B, 5 neighbors were used instead of 10. In Figure 5.7.C, 15 neighbors were

used. In Figure 5.7.D, the region was sampled with 100 times fewer points. In Figure 5.7.E,

the sampled region was much wider than tall. In Figure 5.7.F, samples were drawn from a

Gaussian distribution, instead of a uniform distribution. In Figure 5.7.G, samples were drawn

in 3 intrinsic dimensions. In Figure 5.7.H, samples were drawn in 4 intrinsic dimensions. In
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Figure 5.7: The cumulative distribution of the cycle lengths of the atomic cycles from various
random distributions of points. In every case, the threshold λ = 12 includes nearly all of the
atomic cycles.

every case, the cumulative distribution was approximately the same. This shows that the

threshold value λ is robust across a large variety of conditions. As can be seen in each of the

charts in Figure 5.7, the value λ = 12 is sufficiently large to handle almost all cases. Thus,

we used this value in all of our experiments, and it consistently produced good results. In

most cases, smaller values, such as λ = 8, produced identical results as those obtained using

λ = 12.

5.4.2 Complexity

The find large atomic cycle subroutine contains an inner BFS nested within an outer BFS.

The outer BFS will visit every edge in the graph. The inner BFS will terminate before

following a constant number, kλ, of edges, except for the last time it is called, which will

terminate before following |E| edges, where E is the set of edges. Thus, the asymptotic
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computational complexity of find large atomic cycle is O(|E|). The number of times that

this subroutine must be called depends on the number of shortcut connections in the graph,

so the complexity of CycleCut is bounded between O(|E|) and O(|E|2). If there are few or

no shortcuts, CycleCut scales linearly, so it is well-suited to be used as a “safety-net” prior

to manifold learning. If there are no shortcut connections, as is typically assumed, then little

cost is incurred for performing the check, and if there are some shorcut connections, CycleCut

can guarantee to catch them.

5.4.3 Removing shortcuts

We sampled the manifold {sin(2α) + α
2
,−2 cos(α), β} with 1000 random values for α and

β, where α ∼Uniform(−π, π), and β ∼Uniform(0, 2). Each point was connected with its

14-nearest Euclidean-distance neighbors. 63 of these connections shortcut to geodesically

distant regions of the manifold, as shown in Figure 5.8-left. These shortcut connections would

significantly affect the results of most manifold learning algorithms in a negative manner.

CycleCut correctly detected and removed all 63 shortcut connections. (See Figure 5.8-right.)

No other connections were cut. (This is an example of case 1 from Figure 5.3.)

In another experiment, we sampled a manifold by uniformly drawing 50 × 50 pixel

sub-images from a larger image of rocky terrain. (See Figure 5.9.A.) Because a certain region

on one side of this image was made visually similar to a certain region on the other side, this

manifold approaches very close to itself. Figure 5.9.B shows results obtained using Isomap

with 12 neighbors to reduce 4680 sample sub-images into 2 dimensions. These values are a

poor estimate of the window position. In many cases, it ambiguously assigns similar window

positions for very different sub-images. Much better results were obtained using the same

algorithm and parameters when the neighborhood graph was preprocessed with CycleCut.

(See Figure 5.9.C.) CycleCut removed the connection between some of the images, even

though they were very similar, because they created an atomic cycle in the graph. The results

with CycleCut are a better estimate of the window position, and are sufficiently unambiguous
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Figure 5.8: Left: 1000 points are shown connected with each of their 14-nearest neighbors. 63
of the connections shortcut to geodesically distant regions of the manifold. Right: CycleCut
removed all of these shortcut connections without removing any other connections.

that a model could easily be trained using the resulting data to map from window position

to the sub-image, or from the sub-image to the window position.

5.4.4 Toroidal manifolds

We sampled a panoramic image of a courtyard using a 40× 30 pixel sliding window with 3

color channels at 225× 31 unique window positions. (See Figure 5.10.) We then used Isomap

with 12 neighbors to reduce this data from 3600 to 2 dimensions, both with and without

CycleCut. (This is an example of case 2 from Figure 5.3.) In the case where CycleCut was

not used, Isomap returned results that ambiguously represented multiple window positions

in several regions of the reduced space. When CycleCut was used, it returned results that

approximately corresponded to the yaw and pitch represented by the sliding window.

We repeated this experiment using a different panoramic base image. In this case, we

used an image of Barrage de Malpasset, courtesy of Wikimedia Commons. (See Figure 5.11.A.)

As in the previous experiment, each sub-image corresponds with the image that a camera

would view from this location if pointed in a particular direction. We used Isomap to
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Figure 5.9: A: An image of rocky terrain. We uniformly took 4680 samples from the manifold
of 50 × 50 pixel sub-images with 3 color channels of this terrain. Because a certain region on
one side of this image is visually similar to a certain region on the other side, this manifold
approaches very close to itself. B: Results obtained using the Isomap NLDR algorithm with
12 neighbors to reduce these 4680 samples into 2 dimensions. These values are a poor estimate
of the window position. In many cases, it ambiguously predicts similar window positions
for very different sub-images. C: Results obtained using the same algorithm and the same
number of neighbors, but also using CycleCut to preprocess the neighborhood graph. These
results are a better estimate of the window position, and are sufficiently unambiguous that a
model could easily be trained using this data to map from window position to the image, or
from the image to the window position.

estimate the window position (or camera direction) by reducing the collection of sub-images

to two dimensions. These results are plotted in Figure 5.11.B. In this case, Isomap made its

projection by flattening most of the predicted positions, but stretching a certain region of

them to connect to both ends. Unfortunately, this results in positions having non-unique

meaning. When CycleCut was used, however, it minimally severed the manifold such that

it could be unfolded without ambiguity. (See Figure 5.11.C.) The “ripples” that appear in

these results are due to the assumption Isomap makes that distances in observation space are

proportional to distances in state space. (CycleCut does not correct any assumptions made

by NLDR algorithms. It only corrects topological issues in the manifold itself.)
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Figure 5.10: Top: A 40× 30 pixel window was sampled with 3 color channels at 225× 31
window positions within a panoramic image of a courtyard. (Image derived from a photo
by Rich Niewiroski Jr. from the Wikimedia Commons.) Left: A projection of this data by
Isomap [Tenenbaum et al., 2000] with 12 neighbors into 2 dimensions. Each point is colored
according to the vertical position of the window. Right: A projection by the same algorithm
after CycleCut was applied to the neighborhood map. These values are more meaningful
with respect to the yaw and pitch represented by the window.

When not to use CycleCut

In cases where intrinsic variables are torroidal, CycleCut reduces distortion at the cost of

preserving continuity. Consequently, the choice of whether to use CycleCut when torroidal

intrinsic variables exist depends on which is more important. In visualization tasks, for

example, it may be desirable to present results both with and without CycleCut. If the

two visualizations differ, then the one produced with CycleCut is likely to represent local

structure more faithfully, while the one without CycleCut is likely to present a better global

view of the continuity within the data. In tasks where it is desirable to separate intrinsic

variables into meaningful attributes, such as the state estimation tasks that we demonstrate

in this paper, CycleCut tends to lead to results that exhibit a more linear structure. In such

cases, the original neighorhood graph can be used to provide the continuity information that

CycleCut rejects. Finally, as we demonstrate in the next section, if it is known that all large
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Figure 5.11: A: A panoramic image of Barrage de Malpasset, courtesy of Wikimedia Commons.
We uniformly sampled a manifold by drawing sub-images from this panoramic image. Each
sub-image corresponds with the image that a camera would view from this location if pointed
in a particular direction. B: We used Isomap to estimate the window position (or camera
direction). In this case, Isomap made its projection by flattening most of the predicted
positions, but stretching a certain region of them to connect to both ends. Unfortunately,
this results in positions having non-unique meaning. C: CycleCut minimally severed the
manifold such that it could be unfolded without ambiguity. (The “ripples” that appear in
these results are due to an assumption Isomap makes that distances in observation space are
proportional to distances in state space. CycleCut does not correct faulty assumptions made
by NLDR algorithms.)

atomic cycles in the graph are due to unsampled regions, then there is little value in using

CycleCut.

5.4.5 Unsampled Regions

We sampled a Swiss Roll manifold, {(8α + 2) sin(8α), (8α + 2) cos(8α), 12β}, with 2000

random points. A star-shaped region of this manifold was excluded from being sampled. We

then used Manifold Sculpting [Gashler et al., 2008b] to reduce the dimensionality of these

points. Figure 5.12.A shows the original points. Figure 5.12.B shows the results obtained

from reducing the dimensionality to 2, without using CycleCut. Figure 5.12.C shows results

when CycleCut was used to preprocess neighborhood connections. The results obtained with

CycleCut were nearly identical to those obtained without it. This shows that CycleCut often
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has little adverse effect in cases where it is not needed. (This experiment is an example of

case 3 from Figure 5.3.)

In another experiment, we simulated a robot navigating within a warehouse environ-

ment by sampling in a windowed region from an image of a warehouse. (See Figure 5.13.A.)

We simulated forward and reverse movement by changing the size of the window, and we

simulated lateral movement by moving the window horizontally. Linear interpolation was

used to produce a uniform-sized view from the perspective of the simulated robot. We

applied 4000 random actions from the set {move forward (scale down the window size),

move back (scale up the window size), move left, move right} to this robot and collected

the corresponding images from its view. We simulated a physical obstacle by preventing

this robot from entering a rectangular region near the middle of its state space. We also

injected Gaussian noise into both the transitions and the observations to simulate unreliable

hardware. Specifically, we added a random value from a Gaussian distribution with a standard

deviation of 5 percent of the channel range to each color channel of each pixel in each observed

sub-image. We also added Gaussian noise with a standard deviation of 5 percent of the

step length to each state transition, such that the simulated robot would transition to a

Figure 5.12: A: 2000 sample points on the surface of a Swiss Roll manifold with a star-
shaped region excluded from sampling. B: Results obtained by reducing this dataset to
two dimensions with Manifold Sculpting [Gashler et al., 2008b]. C: Results obtained with
Manifold Sculpting after CycleCut was applied. In this case, 28 neighbor connections were
cut, but the results are nearly identical to those obtained without CycleCut. This shows that
CycleCut has little adverse effect in cases where it is not needed.
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Figure 5.13: A: We simulated a robot navigating within a warehouse environment by sampling
this image within a window. We simulated forward and reverse movement by changing the
size of the window, and we simulated lateral movement by moving the window horizontally.
Linear interpolation was used to produce a uniform-sized view from the perspective of the
simulated robot. We applied 4000 random actions from the set {move forward, move back,
move left, move right} to this robot and collected the corresponding images. We simulated
a physical obstacle by preventing this robot from entering a rectangular region near the
middle of its state space. We also injected Gaussian noise into both the transitions and the
observations. B: We used Temporal NLDR to reduce these images to estimates of the robot’s
position. C: We repeated this procedure with the addition of CycleCut. In this case, the
ideal results would be unchanged. Although CycleCut did change the results somewhat, the
overall structure of the state estimates is very similar whether or not CycleCut was used.
The most significant difference occurs near the top region, where only a small number of
samples were taken (because the robot only wandered into that region one time).

state only near to the one specified by the actions that it performed. After collecting 4000

observation images, we used the Temporal NLDR algorithm [Gashler and Martinez, 2011b]

to reduce them to corresponding estimates of the robot’s position. These results are plotted

in Figure 5.13.B. The “hole” in the center of these results indicates that the robot did not

collect any observations in that region of its state space, as intended. We then repeated this

experiment with the addition of CycleCut to pre-process the neighborhood graph. The results

with CycleCut exhibited similar overall structure, as shown in Figure 5.13.C. Some differences,

however, appear in the upper region of this result. This occured because that portion of the

state space was poorly sampled, because the robot only wandered into that region one time,

so the manifold learning algorithm had little structural information to preserve in that region.
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5.5 Conclusions

We presented an algorithm called CycleCut, which finds a minimal cut necessary to break

the large atomic cycles in a graph. We demonstrated, both theoretically and empirically,

that this algorithm is useful for preparing neighborhood graphs for manifold learning. With

many typical problems, neighborhood graphs contain no large atomic cycles. In such cases,

CycleCut has no effect on the results. When neighborhood graphs do exhibit large atomic

cycles, however, dimensionality reduction can be difficult. In these cases, CycleCut finds a

minimal set of connections that must be cut to eliminate all large atomic cycles from the

graph.

CycleCut makes existing non-linear dimensionality reduction algorithms robust to a

wider range of problems. Using CycleCut to preprocess neighborhood graphs incurs little

cost because it scales well, it has little adverse effect on results in the case where large

atomic cycles are expected in the neighborhood graphs, and it guarantees never to break

connectivity. When shortcut connections exist, CycleCut guarantees to remove them, and

when the manifold connects back to itself, CycleCut has the beneficial effect of removing the

minimal number of connections such that the manifold can be unfolded without introducing

local distortions.
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Chapter 6

Tangent Space Guided Intelligent Neighbor Finding

Abstract: We present an intelligent neighbor-finding algorithm called SAFFRON

that chooses neighboring points while avoiding making connections between points

on geodesically distant regions of a manifold. SAFFRON identifies the suitability of

points to be neighbors by using a relaxation technique that alternately estimates the

tangent space at each point, and measures how well the estimated tangent spaces

align with each other. This technique enables SAFFRON to form high-quality local

neighborhoods, even on manifolds that pass very close to themselves. SAFFRON is

even able to find neighborhoods that correctly follow the manifold topology of certain

self-intersecting manifolds.

6.1 Introduction

Many algorithms commonly used in machine learning rely on local neighborhoods of points.

Instance-based learners (IBL), for example, use consensus among neighboring points to

determine a predicted label for previously unseen points. As another example, non-linear

dimensionality reduction (NLDR) algorithms measure the distances between neighboring

points to represent structure on the surface of a manifold. The quality of results obtained by

these algorithms is limited by the quality of the local neighborhoods with which they operate.

When data is known to lie on the surface of a low-dimensional manifold in high-dimensional

space, poor neighborhood connections are typically defined as those that shortcut across the
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manifold structure between geodesically distant regions of the manifold [Balasubramanian

and Schwartz, 2002, Varini et al., 2006].

We present a novel algorithm called Similarly Aligned Friend Finding RelaxatiON

(SAFFRON ) that is designed to find neighbors on the surface of a non-linear manifold.

SAFFRON takes advantage of the assumption that the samples are drawn from the surface

of a lower-dimensional manifold to select neighbors in a manner that intelligently avoids

short-cutting to geodesically distant regions of the manifold surface. This is useful because

many interesting data sets, including collections of images or documents, tend to form a

non-linear manifold, and SAFFRON enables good neighbors to be found in such data, even

when the manifold structure passes very near to, or in some cases even intersects with,

itself. SAFFRON makes IBL and NLDR algorithms suitable for use with a wider class of

problems–specifically, those that sample highly folded manifolds. In cases where the manifold

structure does not fold back on itself, SAFFRON gives results similar to those obtained with

Euclidean distance. Thus, it is well-suited for general-purpose use.

As a simple example of data that might lie on a manifold that passes very near to itself,

we consider a hypothetical collection of images that is obtained by a robot with a camera as

it travels down a hallway inside a building. It might be useful to use an NLDR algorithm

to reduce this collection of images into fewer dimensions because the intrinsic variables in

this data would correspond with the robot’s position and orientation. Unfortunately, in

many buildings, hallways contain doors that are very similar in appearance to each other.

Thus, if Euclidean distance is used to find neighboring images, it might incorrectly determine

that two images are very similar, even though they depict very distant positions with the

hallway. These images may be considered to be samples from a highly-folded manifold with

a topology that passes very near to itself. Existing techniques may not be able to find local

neighborhoods on such a topology that correctly represent the structure of the manifold.

The SAFFRON algorithm seeks to intelligently select local neighborhoods that correctly

represent the manifold structure, particularly when the manifold passes very close to itself or
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Figure 6.1: A high-level flow diagram of the SAFFRON algorithm.

even intersects itself. We assume that a set of points, P, has been sampled on the surface

of a manifold, such that each point pi ∈ P is a vector in <d. We also assume that the

tangent-space dimensionality, t, of the manifold is known. (In cases where t is not known,

methods exist for estimating this value from the data [Levina and Bickel, 2005].) We refer to

the points that SAFFRON determines to be compatible as friends, rather than neighbors,

because they are determined by their compatability, rather than just by their proximity.

SAFFRON determines two points to be compatible if the tangent spaces associated with

them are closely aligned.

In order to accurately measure the tangent space at a point, the structure of the

manifold would need to be known a priori. Unfortunately, most existing techniques for

learning a manifold structure rely on first finding neighborhoods to represent the local

structure. Thus, in order to identify points that are well-suited to be labeled as friends,

SAFFRON uses a relaxation technique that alternately estimates the tangent space for each

point from its current set of friends, and then refines the friends based on the alignment of

their tangent spaces. When convergence is detected, SAFFRON can intelligently identify

local neighborhoods in a manner that is unlikely to shorcut across the manifold topology. A

high-level flow diagram of the SAFFRON algorithm is given in Figure 6.1.
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The SAFFRON algorithm is comprised of six high-level steps. We now briefly discuss

each of these high-level steps. A more detailed specification of the algorithm, including all

details necessary for implementation, is given in Section 6.3. The first high-level step of the

SAFFRON algorithm uses Euclidean distance to find a set of neighbors, or candidate friends,

Ci. |Ci| should be larger than the number of friends, k, that SAFFRON seeks. A weight

vector, wi specifies the affinity between pi and each of its candidate friends in Ci. Initially,

each candidate point is given uniform weight. As the system relaxes in subsequent steps, the

weight will tend to shift toward the k points in Ci whose tangent spaces are most aligned

with that of pi.

The second high-level step of SAFFRON estimates the tangent space at each pi ∈ P.

This is done by computing the t-first principal components of Ci. The weight of each neighbor

is used when computing the principal components, such that as a candidate point gains more

weight, it will have more influence on the estimate of the tangent space.

The third step is the most significant part of SAFFRON, so we describe it in greater

detail. This step measures how well the tangent-space of pi is aligned with the tangent-space

of each candidate point, and uses this information to update the weights. In order to establish

a suitable metric for determining how well the tangent spaces of two points are aligned, we

define two types of angles as illustrated in Figure 6.2.

The monohedral (one-surface) angle is defined between a point, pi, with its correspond-

ing tangent space, Si, and another point, pj. Si is represented such that each row specifies

one of the orthonormal basis vectors in the tangent space of pi. The monohedral angle is

computed by projecting point pj onto Si, and then computing the angle formed by the three

points 〈pj,pi,pi + Si(pj − pi)〉. Equation 6.1 computes the cosine of the monohedral angle.

m(pi,Si,pj) =
||Si(pj − pi)||
||pj − pi||

(6.1)

The dihedral (two-surfaces) angle is defined between two tangent spaces, Si and Sj.

It is independent of the points pi and pj. In the case where t = d − 1, the dihedral angle
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Figure 6.2: The monohedral (one surface) angle is defined between a point with its corre-
sponding tangent space, and another point. It is independent of the second point’s tangent
space, and is not commutative. The dihedral (two surface) angle is defined between two
tangent spaces. It is independent of the points, and is commutative.

is simply the angle formed by the normal vectors of the two surfaces. Typically, however

t < d− 1. In this case, we use the normal vectors that maximize their distance with their

projection onto the other surface. This can be found with an eigenvector optimization

technique. Equation 6.2 computes the cosine of the dihedral angle between two tangent

spaces. This equation works even when the tangent spaces have a codimensionality greater

than 1. The function fpc(M) as used in Equation 6.2 returns the first principal component of

the row vectors in M, or the eigenvector with the largest eigenvalue of the covariance matrix

of M.

d(Si,Sj) =
(
Si fpc(STj SjS

T
i − STi )

)
·(

Sj fpc(STi SiS
T
j − STj )

)
(6.2)

SAFFRON uses Equation 3 to measure how well two tangent spaces are aligned. When

Si and Sj are mis-aligned, Equation 6.3 will return a value close to 0. When they are aligned,

it will return a larger value. The monohedral angle is measured in both directions because

it is not commutative, while the dihedral angle need only be evaluated once because it is
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commutative. The dihedral component of this equation will be small when the two tangent

spaces are not approximately parallel. At least one of the two monohedral components will

be small when the tangent spaces are approximately parallel, but have a large gap between

them. Thus, when the product of all three components is large, the tangent spaces are

necessarily aligned, and so Equation 6.3 provides a useful indication of whether the Euclidean

distance between two points is representative of the geodesic distance between them, given

the estimated tangent spaces, or whether those points actually lie on separate regions of a

manifold that happens to fold back on itself to create a misleading proximity between the

two points.

a(pi,Si,pj,Sj, λ) = min(λ,m(pi,Si,pj)
2) ∗

min(λ,m(pj,Sj,pi)
2) ∗

min(λ, d(Si,Sj)
2) (6.3)

Equation 6.3 uses the squared cosine of these angles instead of just the cosine of these

angles because both positive and negative correlations are equally indicative of alignment.

In order to be tolerant of noise and curvature in the manifold, we cap the value of all three

components with a threshold, λ, such that all nearly-aligned tangent spaces are evaluated as

being equally good. λ can range from 0 to 1, but for most problems, suitable values typically

range from about 0.85 to 0.95. Smaller values will cause the metric to be more tolerant of

curvature in the manifold, while larger values will cause the metric to be more careful to avoid

connecting two points from geodesically distant regions of the manifold. As λ approaches

0, the results from SAFFRON approach those obtained using Euclidean distance to find

neighbors.

Figure 6.3 gives an intuition for why the product of these three components provides

a good measure of tangent-space alignment. This figure shows 4 cases. In each case, the two
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Case 1 Case 2 Case 3 Case 4
m(pi,Si,pj) ≈ 1 ≈ 0 ≈ 0 ≈ 1
m(pj,Sj,pi) ≈ 1 ≈ 1 ≈ 0 ≈ 1
d(Si,Sj) ≈ 1 ≈ 0 ≈ 1 ≈ 0
a(pi,Si,pj,Sj, λ) ≈ λ3 ≈ 0 ≈ 0 ≈ 0

Figure 6.3: Four cases are shown with two points separated by a constant distance and their
corresponding tangent spaces. Case 1 is the only case where the tangent spaces of the two
points are aligned. The cosine of the monohedral angle is evaluated in both directions because
it is not commutative, whereas the cosine of the dihedral angle is the same in both directions.
The tangent spaces of two points are aligned when all three metrics are close to 1. This
property generalizes into arbitrary dimensional spaces.

points are nearly the same distance apart, but their corresponding tangent spaces are oriented

in various ways. For the purpose of visualization, we enclose each point with a rectangular

region on its corresponding tangent space. Arrows extending from the point represent a set

of basis vectors that might define this tangent space. In case 1, where the tangent spaces

are aligned, all three values are close to 1. In each case where the the tangent spaces are

misaligned in some way (cases 2, 3, and 4), at least one of the three values is close to zero.

Thus, the product of these three components is only close to 1 when the tangent spaces are

aligned.

SAFFRON decays the weights of the |Ci| − k candidate friends that are the least

aligned with pi. The weight vector is then normalized to sum to 1. (This effectively shifts the

weight toward the k candidate friends with tangent spaces that are most aligned with pi.)

Step 4 of the SAFFRON algorithm detects convergence. Convergence can be easily

detected because each iteration increases the alignment scores of the candidate friends with
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the largest weights. Thus, a goodness score for the system is given as the sum of the alignment

scores scaled by the weights. When this goodness value no longer increase significantly, it

has converged.

Step 5 forms local neighborhoods of points. This is done for each point by selecting

the k candidate friends with the largest weights.

The last high-level step of SAFFRON is to post-process the neighborhoods with the

CycleCut algorithm [Gashler and Martinez, 2012]. CycleCut is an algorithm that uses a

max-flow/min-cut technique to detect and prune neighbor connections that shortcut across

the manifold topology. We consider a complete description of the CycleCut algorithm to be

outside the scope of this paper, but we give a high-level overview of its function here. The

CycleCut algorithm is described in Chapter 5.

This step may be considered to be optional because with many problems, SAFFRON

can form high-quality neighborhoods without this last step. The addition of this step, however,

increases the robustness of the SAFFRON algorithm. SAFFRON relies on several parameter

values (including the number of candidate points q, the number of neighbors k, the number

of tangent-space dimensions t, and a threshold value, λ). When these values are poorly-tuned

for the problem, or when the data contains a large amount of noise, SAFFRON may find a

small number of neighbors that still shortcut across the manifold structure. CycleCut can

detect and remove these connections, but it can only distinguish the shortcuts from valid

connections if the number of shortcut connections is small. Thus, SAFFRON and CycleCut

are designed to complement each other. SAFFRON makes it possible for CycleCut to identify

shortcut connections by keeping the number of shortcut connections small, and CycleCut

ensures that the final results will be free of the large cycles that are created by connections

that shortcut across manifold boundaries.

The remainder of this paper is layed out as follows. Section 6.2 describes related work.

Section 6.3 describes the SAFFRON and CycleCut algorithms in detail sufficient to facilitate
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implementation. Section 6.4 reports results from empirical tests to validate the properties of

SAFFRON. Finally, Section 6.5 summarizes the contributions of this paper.

6.2 Related Work

Due to the large number of algorithms that rely on being able to identify neighboring

points, neighbor-finding has been a topic of interest in machine learning for a long time.

Many distance, similarity, and dis-similarity metrics have been proposed for this purpose

[Mahalanobis, 1936, Menger, 1942, Stigler, 1989, Diday, 1974, Wilson and Martinez, 1997].

It has been shown that as dimensionality becomes large, the distance from a point to its

farthest neighbor approaches the distance to its nearest neighbor [Jonathan et al., 1999].

Thus, techniques that intelligently select neighbors, rather than merely relying on a distance

metric, are particularly important for applications involving high-dimensional space. In this

paper, we focus on finding neighbors among points that are known to lie on the surface of an

intrinsically low-dimensional manifold in high-dimensional space.

The idea of using the assumption that data lies on a manifold to guide the evaluation

of distances is not new [Nomizu and Ozeki, 1961]. Recently, however, as interest in manifold

learning has increased in machine learning communities, techniques for estimating distances

between points that sample from an unknown manifold have become of interest. One example

is Ranking on Manifolds [Zhou et al., 2004]. This technique evaluates distance in a manner

that penalizes paths that cross gaps over unsampled regions of the manifold, and thereby

evaluates distance in a manner that conforms more closely to the intrinsic manifold structure.

Perhaps the most similar algorithm to SAFFRON is Adaptive Neighborhood Selection for

Manifold Learning [Wei et al., 2008]. This technique builds on top of Ranking on Manifolds

by adaptively choosing parameter values in local neighborhoods. SAFFRON is similar in

that it also adaptively chooses settings in each neighborhood, but differs in how it determines

proximity to the manifold. SAFFRON uses an approach similar to that used by the Local

Tangent Space Alignment (LTSA) [Zhang and Zha, 2002] for estimating a tangent space by
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computing the first t principal components in local neighborhoods. Unlike LTSA, however,

it does so without the assumption that neighbors have already been found, and it uses

the tangent spaces to guide the selection of neighbors (or friends). This approach enables

SAFFRON to find better local neighborhoods on the surface of sampled manifolds than

existing techniques.

6.3 The SAFFRON algorithm

Figure 6.4 gives pseudocode for the SAFFRON algorithm. The parameters to the algorithm

are:

P ≡ set of points on which to operate.

q ≡ median number of candidate points from which to select friends.

k ≡ number of friends to find for each point. (k < q.)

t ≡ dimensionality of the manifold tangent space.

λ ≡ threshold that determines tolerance to curvature.

Line 1 of the SAFFRON algorithm computes a radius, r, in which to find candidate

friends for each point. Because a suitable radius is necessarily problem-specific, it is preferable

to parameterize the algorithm in terms of q, the median number of candidates, and to compute

r from q. Lines 2-5 find a set of candidate friends for each point and assign uniform weight

to each of them. These candidates consist of all points within the specified radius of each

point. Lines 6, 10, and 20 compute a “goodness” score for the system that is used in

line 21 to dectect convergence. The value of g will increase with each iteration until the

system converges. Lines 7-21 are the main loop of the SAFFRON algorithm. Lines 8-9

estimate the tangent space of each point by computing the first t principal components of

Ci. Each candidate neighbors is weighted according to wi when the principal components
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are computed. Each row in Si, therefore, will store one of the t orthonormal basis vectors in

the tangent space for pi. Lines 11-19 update the weights of each point in P. Line 15 uses

Equation 6.3 to compute an alignment score for each candidate friend of pi. Line 18 decays

the weight of the candidate friends with the lowest alignment scores. Our implementation

decays these weights by multiplying by 0.9. Obviously other values could be used here, but

we have not been able to detect any significant effect on results by adjusting this value. If

there are multiple candidates with the same alignment score, the closer points are considered

to be better aligned. Line 19 normalizes wi to sum to one. Thus, lines 18 and 19 together

effectively shift the weight toward the k-best friends of pi. Line 21 detects convergence.

Our implementation stops when the goodness score increases by less than 0.01% after one

iteration over all of the data points. Other values could be used to detect convergence, but

we have obtained little perceptible benefit by tuning this value. Line 22 forms the local

neighborhoods by selecting the k points with the largest weights to be the friends of each

pi. Line 23 performs a post-processing operation on the neighborhoods called CycleCut,

which detects and removes any shortcut connections that were erroneously found in previous

steps. CycleCut is only effective at detecting shortcut connections if the number of shortcut

connections is small, so it is typically not sufficient to just use CycleCut by itself. The

CycleCut algorithm is described in Chapter 5.

6.4 Experimental Analysis

To show that SAFFRON is effective at forming neighborhoods that do not shortcut across

the manifold, even when the manifold approaches very close to itself, we sampled 439 points

uniformly on an intrinsically one-dimensional compressed helix manifold defined by the

equations 〈sin(α), 0.005α, cos(α)〉. Figure 6.5.A shows each point connected with its four

nearest Euclidean-distance neighbors. If the manifold is considered to be an intrinsically

two-dimensional ring, then the neighbors found by Euclidean distance correctly represent

its topology. Unfortunately, Euclidean distance does not provide a mechanism to specify
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function SAFFRON(P, q, k, t, λ)
1 set r ← the median distance to the qth neighbor in P.
2 for each point pi ∈ P:
3 let Ci be the subset of points pj ∈ P, where

j 6= i, and ||pj − pi|| < r.
4 let wi be a vector of weights for points in Ci.
5 set each wij ∈ wi ← 1

|wi| .

6 g ← 0
7 loop:
8 for each point pi ∈ P:
9 Si ←estimate tangent space(P, i,Ci,wi, t).
10 set h← g; g ← 0.
11 for each point pi ∈ P:
12 let xi be a vector of alignment scores

for each candidate point in Ci.
13 for each point cij ∈ Ci:
14 let pl be the point in P that is cij.
15 set xij ← a(pi,Si,pl,Sl, λ)
16 set e← |x| − k.
17 for each of the e-smallest values xij ∈ xi:
18 set wij ← 0.9 ∗ wij.
19 set wi ← wi∑

j wij
.

20 set g ← g + xi ·wi.
21 until g

h
− 1 < 0.0001

22 for each pi ∈ P, choose the k candidate points with the
largest weights to be the friends of pi.

23 Prune any shorcut connections with the
CycleCut algorithm.

Figure 6.4: Pseudo code for finding the k-best friends of each row in P, assuming the points
lie on a t-dimensional manifold. r is a radius in which to find candidate points. λ is a
threshold value between 0 and 1 that specifies how well-aligned the tangent-spaces of points
must be in order for them to be considered friends.
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Figure 6.5: A: Samples at regular intervals are shown on an intrinsically one-dimensional
compressed helix manifold. Each point is shown connected with its four nearest Euclidean-
distance neighbors. These would represent good local neighborhoods for an intrinsically
two-dimensional ring manifold, but Euclidean distance does not provide a mechanism to
specify the intrinsic dimensionality. B: Each point is shown connected with its four best
friends as determined by SAFFRON with parameters q = 32, k = 4, t = 1, λ = 0.95.
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the intrinsic dimensionality. With SAFFRON, this is done by setting the parameter value t.

Figure 6.5.B shows the same points connected with their 4-best friends, as determined by

SAFFRON with parameters q = 32, k = 4, t = 1, λ = 0.95.

We note that a solution to a compressed helix manifold using adaptive neighborhood

selection was also presented by [Wei et al., 2008]. In that case, however, the compressed helix

was compressed only to the point where the nearest neighbors of each point still included the

previous and next points in the one-dimensional sequence. The compressed helix manifold

for which we report results is a much harder problem because it is sufficiently compressed

that neither the previous nor next point in the sequence is even among the four nearest

Euclidean-distance neighbors for many of the points. By aligning tangent spaces, however,

SAFFRON is able to correctly determine which points are most likely to be neighboring

samples on a manifold with the specified number of intrinsic dimensions. If t is set to 2

instead of 1, SAFFRON behaves more like Euclidean distance by choosing neighbors in

vertical directions as well as horizontal directions.

The parameters that we used to solve this problem were selected intuitively. The

value q = 32 was chosen such that the pool of candidate friends for each point would be

sufficiently large to include the two previous and two next points in the helix. The value

k = 4 was chosen for the visual appeal of displaying 4 neighbors in Figure 6.5.A. The value

t = 1 was chosen to indicate the intended intrinsic dimensionality of the problem. The value

λ = 0.95 was chosen to be fairly large in order to prevent neighbors from shortcutting across

the manifold. With these parameters, SAFFRON made no shortcutting neighbor connections.

The same results were obtained both with and without the final CycleCut shortcut-pruning

step of the SAFFRON algorithm. When the CycleCut step is included, however, a broader

range of parameter values can be used to still obtain the same results.

To test SAFFRON with an even more extreme manifold, we sampled 63 points from

an intrinsically one-dimensional manifold that intersects with itself according to the equations

〈sin(2α), 2 cos(α)〉. Figure 6.6.A shows each point connected with its 4-nearest Euclidean-
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Figure 6.6: A: Samples at regular intervals are shown on an intrinsically one-dimensional self-
intersecting manifold. Each point is shown connected with its four nearest Euclidean-distance
neighbors. These connections shortcut across the manifold structure, misrepresenting the
manifold topology. NLDR algorithms that rely on such neighborhoods will not correctly
unfold the manifold. B: Each point is shown connected with its four best friends as determined
by SAFFRON with parameters q = 6, k = 4, t = 1, λ = 0.9.

99



distance neighbors. These connections shortcut across the manifold structure, misrepresenting

the manifold topology. If an NLDR algorithm were to try to unfold this manifold based on

these neighborhoods, the shortcut connections would cause it to produce incorrect results.

By contrast, Figure 6.6.B shows the same points connected with their 4-best friends as

determined by SAFFRON with parameters q = 6, k = 4, t = 1, λ = 0.9. None of the

neighbor connections found by SAFFRON shortcut across the manifold topology. SAFFRON

is able to determine that the very close points near the center would make poor friends

because they have very mis-aligned tangent spaces. To our knowledge, SAFFRON is the first

neighbor-finding technique that can correctly find neighbors on a self-intersecting manifold.

The same results were obtained both with and without the final CycleCut shortcut-pruning

step of the SAFFRON algorithm. When the CycleCut step is included, however, a broader

range of parameter values can be used to still obtain the same results.

We also created an intrinsically two-dimensional manifold embedded in three-dimensional

space according to the equations 〈sin(2α), 2 cos(α), 2β〉. With this manifold, we sampled

2000 points using random values for α and β from a uniform distribution. Figure 6.7.A

shows a plot of these point. We used SAFFRON to compute local neighborhoods with the

parameters q = 40, k = 18, t = 2, λ = 0.9. We then used Manifold Sculpting [Gashler

et al., 2008b] to reduce the dimensionality of these points to two dimensions, using the local

neighborhoods computed by SAFFRON. Figure 6.7.B shows a plot of the data after reducing

to two dimensions. In this case, the CycleCut step was necessary to obtain this result.

For visual clarity, the points in Figure 6.7 are colored according to the value of

α. SAFFRON, of course, did not have access to any information that would enable it to

determine the color of any of the points, or the corresponding intrinsic values α or β. It can

be observed in Figure 6.7.B that a small number of purple-colored points were incorrectly

placed among the yellow points, and a small number of yellow points were incorrectly placed

among the purple point. This occurs because these points were located very near to where

the manifold intersected itself. As the relaxation process used by SAFFRON proceeds, the
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Figure 6.7: A: 2000 sample points on an intrinsically two-dimensional self-intersecting
manifold. B: SAFFRON was used with the parameters q = 40, k = 18, t = 2, λ = 0.9 to
find neighbors, and then Manifold Sculpting [Gashler et al., 2008b] was used to reduce the
dimensionality to 2. Because these neighborhoods did not jump across manifold boundaries,
Manifold Sculpting was able to correctly unfold this manifold.
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tangent spaces at each point align themselves with their neighbors. With these points, the

correct alignment could not be unambiguously determined. As these points began to align

with one side, they also simultaneously disassociated themselves with the other side, and

therefore became entirely embedded into just one location of the graph. A less-intelligent

neighbor-finding technique might leave these points connected to both regions of the manifold.

This would create a graph that an NLDR algorithm would not be able to unfold because the

shortcut connections would bind geodesically distant regions of the manifold close together.

6.5 Conclusion

We presented an intelligent neighbor-finding algorithm called SAFFRON, which uses a

relaxation technique to select neighbors such that the tangent spaces represented in local

neighborhoods will be aligned. This technique enables neighbors to be found that are robust

against shortcutting across manifold structure. Because so many important techniques used

in machine learning rely on graphs formed by connecting neighboring points, SAFFRON has

significant potential to improve the analysis of data that lies on a low-dimensional manifold

in high-dimensional space.

The contributions of this paper include: a method for measuring the dihedral angle

between two flats with a codimension greater than 1, a method for evaluating the alignment

of two tangent spaces by computing the product of the dihedral and monohedral angles, and

most significantly, a relaxation technique for determining which points are best-suited to be

neighbors, without shortcutting across a manifold structure.
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Part III

Applied Manifold Learning

Techniques

The chapters in this part present new manifold learning techniques designed for specific

applications, and implementations thereof. Following the rush of enthusiasm for manifold

learning that was manifested in machine learning communities around the turn of the century

(2000), a certain sense of pessimistic counter-response seemed to follow as researchers began

to note that few practical applications were emerging for manifold learning. Although some

expectations may have initially been set too high, another part of this counter-response may

have been caused by a shortage of patience, as we demonstrate in this part that manifold

learning is a critical component in solutions to certain significant applications.

Chapter 7 demonstrates a new manifold learning technique designed for modeling

dynamical systems. In order to make manifold learning suitable for this task, it challenges

one of the key assumptions made by nearly all existing manifold learners, that distances

in observation space are proportional to distances in state space. By eliminating this poor

assumption, we show that manifold learning can be used to estimate the state of dynamical

systems with precision from image-based observations. We also show that this leads to a
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method for training recurrent neural networks, which outperforms existing methods by a

significant margin.

Chapter 8 presents a manifold learning approach that is particularly well-suited for the

task of imputing missing values in data. By assuming that data points lie on the surface of a

manifold, this technique is able to produce a better intrinsic representation of each pattern,

and this naturally leads to better predictions of missing values.

Chapter 9 reports on an open source toolkit of machine learning algorithms, called

Waffles. This toolkit implements all of the algorithms described in this dissertation, as well

as several existing dimensionality reduction algorithms. It also makes several contributions

outside of dimensionality reduction, that are not available in other machine learning toolkits.
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Chapter 7

Temporal Nonlinear Dimensionality Reduction

Abstract: Existing Nonlinear dimensionality reduction (NLDR) algorithms make the

assumption that distances between observations are uniformly scaled. Unfortunately,

with many interesting systems, this assumption does not hold. We present a new

technique called Temporal NLDR (TNLDR), which is specifically designed for analyzing

the high-dimensional observations obtained from random-walks with dynamical systems

that have external controls. It uses the additional information implicit in ordered

sequences of observations to compensate for non-uniform scaling in observation space.

We demonstrate that TNLDR computes more accurate estimates of intrinsic state

than regular NLDR, and we show that accurate estimates of state can be used to

train accurate models of dynamical systems.

7.1 Introduction

Nonlinear dimensionality reduction (NLDR) algorithms operate on an unordered set of

high-dimensional observation vectors, Y = 〈y1,y2, ...,yn〉. They compute a corresponding

set of low-dimensional vectors, X = 〈x1,x2, ...,xn〉, such that each xi is a low-dimensional

representation of yi. xi may be thought of as a representation of the intrinsic values, or state,

from which the corresponding observation yi was derived.

In order to compute X, most NLDR algorithms make the assumption that the pair-

wise distances between neighboring points in Y will be approximately proportional to the
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corresponding pair-wise distances in X. We refer to this as the assumption of proportional

distances. Unfortunately, in many interesting cases, this assumption does not hold. For

example, consider a robot which uses a camera to navigate within a building. Each yt ∈ Y

is a high-dimensional vector of pixel values obtained from the robot’s camera. When the

robot moves, the amount of change in the observation is not only affected by the amount of

movement, but also by the distance between the camera and the objects that are in view.

Further, the color and texture patterns of the objects in view may cause observational changes

to be scaled higher or lower, independent of the actual change in state. Partial occlusions

may further exacerbate this problem. Because the assumption of proportional distances

does not hold in many real-world systems, traditional NLDR algorithms are not suitable for

estimating the intrinsic state of these systems.

We present a new technique called Temporal NLDR (TNLDR), which utilizes the

additional information found in sequences of observations to perform nonlinear dimensionality

reduction without making the assumption of proportional distances. We show that TNLDR

is effective at estimating the intrinsic state of systems from high-dimensional observations,

where traditional NLDR algorithms fail. We also demonstrate that an accurate estimate of

intrinsic system state is useful for training a model of the system, a process also known as

nonlinear black-box system identification.

TNLDR operates using more information than regular NLDR. TNLDR assumes that

Y is an ordered sequence of observations occurring at regular time intervals. Additionally,

a sequence of actions, A = 〈a1, a2, ..., an〉, is given to specify the control inputs given to

influence the dynamical system. By using this additional information, TNLDR is able to

compute pair-wise distances between observations in a manner that is independant of the

local scaling of observations, and then use existing methods to estimate system state.

TNLDR is designed to reduce the dimensionality of the output of dynamical systems.

A general model of a dynamical system is given in Figure 7.1. At any given time, t, the

output, yt, can be observed to provide information about the system. We assume that yt is
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Figure 7.1: A model of a dynamical system. f is the transition function of the system. g is
the observation function. t specifies a time-step. a is an action vector, which may be discrete
or continuous. x is a vector of continuous values that represent state. y is a high-dimensional
observation vector.

a high-dimensional vector of continuous values. yt is not directly a function of the current

input at. Rather, yt is a function of the hidden state, xt, which may be considered to be an

aggregation of the initial state, x0, and all of the inputs, or actions, that were previously

applied to the system, 〈a0, a1, ..., at−1〉. Actions may be continuous or discrete. At each

time-step, the system transitions to a new state, which is determined by the current state and

the action which is applied to the system. Thus, traditional supervised learning algorithms,

which assume the output is a direct function of the input, are not sufficient for modeling

dynamical systems. Dynamical systems can be challenging to model because the sequence

of states, X = 〈x0,x1, ...,xn−1〉, is not directly observable. TNLDR, however, can greatly

simplify the task of modeling a dynamical system by estimating a sequence of states, X, that

corresponds with the sequence of actions, A, applied to the system, and the sequence of

observations, Y, that come out from the system. Thus, TNLDR estimates X, from {A,Y}.

In the robot example, if A is a sequence of n actions from the set {turn left, turn right, move

forward, back up}, and Y is the video of n frames from the robot’s camera, then TNLDR

might use this information to estimate a sequence of vectors that represent the position and

orientation of the robot at each of the n time-steps.

In order for TNLDR to compensate for non-uniform local scaling in observation space,

it needs a mechanism to estimate how distances are scaled at each position. Therefore, a

regression model, h, is trained with each 〈yt, at〉 → (yt+1 − yt), where t < n. h gives an

estimate of how the observation vector will change when a particular action is applied at any

position in observation space. The magnitude of this predicted change corresponds with the
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local scaling of observations. Typically, NLDR algorithms compute the pair-wise distance

between two observations, yi and yj, as ||yj − yi||. This approach is simple, but it does not

compensate for local scaling. TNLDR computes this distance by finding the most direct path

of actions from yi to yj , using h to estimate the effect of each candidate action at every step

along the path. The distance between yi and yj is the number of actions in the path, or the

number of time-steps that separate the two observations. This time-based distance metric is

better-suited for analyzing the high-dimensional observations from dynamical systems because

it is independent of the factors that cause observations to be scaled disproportionately with

state. TNLDR uses this time-based distance metric to choose local neighborhoods, and to

compute the pair-wise distances, D, between them, where each dij ∈ D is the time-based

distance between yi and yj. TNLDR then uses a regular NLDR to compute X from D.

TNLDR may be summarized at a high-level as:

1. Train a regression model, h, with each 〈yt, at〉 → (yt+1 − yt), where t < n− 1.

2. Use h to identify neighboring observations, and to compute the pair-wise distances,

D, between neighboring observations.

3. Use a regular NLDR algorithm to compute X from D.

TNLDR is designed to analyze high-dimensional observations from dynamical systems.

This may be useful, for example, because it will enable a system to be monitored using a

general-purpose optical camera, which produces high-dimensional information, instead of

problem-specific sensory devices.

We report results from several experiments that demonstrate the effectiveness of

TNLDR. We compare TNLDR with existing NLDR algorithms, and show that TNLDR

obtains better results. We also show that TNLDR can be used to facilitate the training of

models of dynamical systems that have external controls. We compare models trained by

TNLDR with those trained using conventional methods and show that the models trained

with TNLDR are more accurate. We show that TNLDR enables other regression models,
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besides neural networks, to be used in a recurrent manner for modeling dynamical systems.

We also demonstrate that a model trained with TNLDR is sufficiently accurate to facilitate

planning in isolation from the system.

This paper is laid out as follows. In Section 7.2 we give an overview of related work.

In Section 7.3 we describe TNLDR in detail. Section 7.4 reports analysis and validation of

TNLDR and the related SEIT method. Finally, Section 7.5 summarizes the contributions of

this paper.

7.2 Related Work

Many works have been presented in the last decade related to NLDR [Tenenbaum et al.,

2000, Roweis and Saul, 2000, Zhang and Zha, 2002, Donoho and Grimes, 2003, Weinberger

et al., 2004, Levina and Bickel, 2005, Venna and Kaski, 2006, Gashler et al., 2008b]. In

our experiments, we use Isomap [Tenenbaum et al., 2000] and Breadth-first Unfolding with

TNLDR, although other NLDR algorithms are suitable as well. The primary focus of TNLDR

is for analyzing high-dimensional nonlinear observations from dynamical systems, especially

when an estimate of state is required. The notion of using dimensionality reduction to estimate

state has been used previously, particularly for the application of robot tracking [Black, 1996,

Crowley et al., 1998, Pourraz and Crowley, 1998, Nayar et al., 1996, Keeratipranon et al.,

2006]. To our knowledge, however, no dimensionality reduction technique has yet tried to

specifically make use of the additional information that is found in sequences of observations.

In order to demonstrate the effectiveness of TNLDR, we use TNLDR to train models

of dynamical systems. Most work to date related to modeling nonlinear dynamical systems

involves recurrent neural networks. Existing methods for training the weights of recurrent

neural networks can be broadly divided into two categories: Those based on nonlinear global

optimization techniques, and those based on descending a local error gradient. Perhaps the

most common nonlinear global optimization technique for training recurrent neural networks

is evolutionary optimization [Floreano and Mondada, 1994, Sjöberg et al., 1995, Blanco et al.,
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2001]. Unfortunately, in practice, evolutionary optimization tends to be extremely slow, and

it is unable to yield good results with many difficult problems [Sontag, 1993, Sjöberg et al.,

1995]. Evolutionary optimizers are particularly susceptible to problems where an error surface

exhibits narrow channels. The optimizer will typically become stalled as it waits to find a

lucky vector that falls within the narrow region of improved vectors. Gradient-based methods

that converge to a local optimum offer much faster convergence than optimization techniques

that seek the global optimum. Perhaps the most popular of the gradient-based techniques

for recurrent networks is Backpropagation Through Time (BPTT) [Mozer, 1995]. Another

common gradient-based method is Real-Time Recurrent Learning (RTRL) [Robinson and

Fallside, 1987]. Although gradient-based methods converge faster than global optimization

methods, they are susceptible to problems with local optima. With feed-forward neural

networks, local optima is often considered to be an insignificant problem since many local

optima occur near relatively good regions of the weight space. With recurrent neural networks,

however, local optima is a much more significant problem [Cuéllar et al., 2006]. The feedback

which comes through the recurrent connections can create fluctuating and chaotic responses

in the error surface, causing local optima to occur both frequently and in poor locations of

the weight space. By contrast, the NLDR component of TNLDR is designed specifically for

estimating intrinsic state without being subject to problems with local optima. We show that

this naturally leads to better models than can be obtained using BPTT and other methods.

TNLDR may be loosely comparable with the extended Kalman filter (EKF), since

both are used to estimate the hidden state of a system. The EKF, however, utilizes a

non-linear model of system dynamics, provided by the user, to estimate state. By contrast,

TNLDR estimates state without requiring a model of the system to be supplied. Thus, the

state estimated by TNLDR may be used to train a non-linear model of system dynamics.

7.3 The TNLDR algorithm

TNLDR is described in pseudo-code in Figure 7.2. We now describe each step in the algorithm.
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function TNLDR(Y,A)
Let n = |Y| = |A| = the length of time represented in the training data.
Let D be a neighbor-distance table, where each dij ∈ D represents the

distance between neighboring observations yi and yj.
ε← 2

1. Train a regression model, h, with each 〈yt, at〉 → (yt+1 − yt), where t < n− 1.
2. for each yi ∈ Y:

for each yj ∈ Y, j 6= i:
p(i, j)←FindPath(yi,yj), where FindPath is defined in Figure 7.3
if ||p(i, j)|| < ε then dij = ||p(i, j)|| else yj is not a neighbor of yi

3. Use an NLDR algorithm to compute a sequence of context vectors, X, from D.

Figure 7.2: Pseudo-code for TNLDR.

Step 1: The first step of TNLDR is to train a supervised learning regression algorithm,

h, with each 〈yt, at〉 → (yt+1 − yt), where t < n − 1. In our implementation, we use a 1-

nearest-neighbor model for h, but other algorithms may be suitable as well.

Step 2: A path of actions, p(i, j), is estimated from each yi to yj, where j 6= i,

j < n, and i < n. In our implementation, we use the simple greedy approach described with

pseudo-code in Figure 7.3 to find this path, but other path search algorithms may be suitable

as well. Our simple greedy path search constructs a set, B, of all the unique actions in A. At

each step, it removes all actions from B that are not positively correlated with the remaining

difference in observations. This ensures that it does not find paths that spiral inward or

overshoot and then backtrack. It always chooses the action that is most positively correlated

with the remaining difference, which is not necessarily the action that advances closest to the

goal. This approach is more robust when it is not known how the axes are locally scaled with

respect to each other in observation space. It will take at most one step before recomputing

the predicted change in observations. Fractional steps are permitted when it is less than one

time-step away from the goal.

The path returned by this greedy algorithm is a vector of the number of times that

each action is performed on the estimated most-direct path from yi to yj. This is a lossy
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function FindPath(yi,yj) Comments
r ← ||yj − yi|| Measure the initial residual
B ← the set of unique actions in A Make a set of candidate actions
p(i, j)← 0|B| Start with empty path
while |B| > 0 : While there are useful actions

for each b ∈ B: Prune counter-productive actions
if h(yi,b) · (yj − yi) ≤ 0 If b is not positively correlated

remove b from B Do not try action b again
if |B| > 0 : If there are still useful actions

a← argmaxb∈B
h(yi,b)
||h(yi,b)|| · (yj − yi) Find the best-correlated action

s← min(1,
h(yi,a)·(yj−yi)

||yj−yi||2 ) Compute fractional action

yi ← yi + s ∗ h(yi, a) Step closer to yj
pa(i, j)← pa(i, j) + s Update the count for action a

if ||yj − yi|| < λ ∗ r then return p(i, j) Accept good estimates
else return null Reject very poor estimates

Figure 7.3: Pseudo-code for a greedy algorithm that estimates p(i, j), where pa(i, j) is the
number of times that action a is performed on the estimated most-direct path from yi to yj.
(Fractional counts are permitted.) The value λ = 0.2 is suitable in almost all cases.

representation of the path in that it does not represent the order in which the actions are

performed. That information is not needed hereafter, so this is a sufficient representation.

Because this is a greedy technique, it is possible that the search for a path from yi to

yj may become stuck in a local optimum. This condition is detected if more than a ratio

of λ of the gap between yi to yj is unexplained by the estimated path. When this occurs,

the path is rejected as an invalid estimate, and yj is determined to not be a neighbor of yi.

If the observation manifold exhibits local linearity, which is typically assumed, then short

paths will not encounter local optima. Since long paths will be rejected anyway, there is

little (if any) value in fine-tuning the value of λ. The only significant case when this check

has any effect is when a very distant point begins close to a local optimum. In such cases,

the estimated path length will be close to zero, and nearly all of the distance between yi to

yj will remain unexplained by the path. Thus, a wide range of values for λ yields nearly

identical results. We use λ = 0.2 in all of our experiments.
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Typically NLDR uses one of two common techniques for determining local neighbor-

hoods. The most common technique is to compute the k-nearest Euclidean distance neighbors

of every yt ∈ Y. A less-popular technique is to choose all points that fall within a distance of

ε to be neighbors. This approach is less popular because it requires a problem-specific value

for ε. A good value can be difficult to determine since distances in observation space depend

on the nature of the observations. Since TNLDR uses a problem-independent time-based

distance metric, however, it is possible to intuitively select a value for ε that will be suitable

with many different problems. Each yj is determined to be a neighbor of yi if ||p(i, j)|| ≤ ε.

In our implementation, we use the value ε = 2. Intuitively, this means that some observation

is determined to be a neighbor of the current observation if it can be reached by performing

two or fewer actions. This creates a local neighborhood size that is suitable for most problems,

and is robust even when some regions of the context space are sampled more heavily than

others, which is typical with random walks.

If the actions are continuous, then ||p(i, j)|| is computed as the length of the path, or

Manhattan magnitude. If the actions are discrete, then ||p(i, j)|| is the Euclidean magnitude

of p(i, j). It is computed this way because the NLDR algorithm used in the next step will

assume a continuous space while computing the context embedding, and will seek to preserve

the Euclidean distance between points.

Step 3: X is computed by using an NLDR algorithm with the table of normalized

neighbor distances, D. Some NLDR algorithms that inherently support custom distance

metrics include: Isomap [Tenenbaum et al., 2000], Local Multidimensional Scaling [Venna and

Kaski, 2006], and Breadth-first Unfolding . Some other existing NLDR algorithms compute

distances internally, usually using Euclidean distance, and do not explicitly support custom

distance metrics. These NLDR algorithms may need to be modified somewhat to be suitable

for use with TNLDR.
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7.4 Experimental Validation

This section reports results from experiments designed to validate the utility of TNLDR.

Section 7.4.1 compares the state estimates of TNLDR with those of the corresponding NLDR

algorithms. Section 7.4.2 demonstrates the use of TNLDR to build a more accurate model of

a dynamical systems than existing methods. Section 7.4.3 demonstrates that TNLDR can be

used to build models of dynamical systems using recurrent versions of arbitrary regression

models. Section 7.4.4 demonstrates that a model trained by TNLDR is sufficiently accurate

to facilitate planning.

7.4.1 State Estimation

We used a simulated system involving a virtual crane with a boom and a ball that hangs from

a cable. There were 4 actions associated with this system: {rotate right (yaw-wise), rotate

left, extend the length of the cable, shorten the cable}. A ray-tracer was used to generate

64× 48 pixel 3-channel observation images of this system, such that each observation was a

9216-dimensional vector. We generated a sequence of 4000 random actions, A, and applied

them to this system to obtain the corresponding 4000 observation images, Y

Figure 7.4A shows the result of using principal component analysis, a linear dimen-

sionality reduction technique, to reduce Y into two dimensions. This visualization shows

that the actions have a non-uniform impact on the observations. In most cases, changing the

yaw angle of the crane has a large impact on the system in observation space, while changing

the length of the cable has a relatively small impact in observation space. This is manifest in

the formation of small string-like clusters in the PCA plot. Each “string” is composed of

observations with the same yaw-angle, but different cable lengths. Effective neighbor-finding

is difficult in this space for two reasons: First, Euclidean-distance will tend to pick only

neighbors with the same yaw-angle, since the cable-length has a lesser impact on observations.

Second, the random walk samples the space non-uniformly. In order to facilitate NLDR, local

neighborhoods must be transitively connected across the entire manifold, but in order to
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Figure 7.4: A) A PCA projection of Y into 2 dimensions. B) An Isomap projection of Y.
C) A Breadth-first Unfolding projection of Y. D) The actual hidden states visited by the
random walk. E) A TNLDR projection of Y using Isomap. F) A TNLDR projection of Y
using Breadth-first Unfolding. TNLDR estimates the state of dynamical systems better than
regular NLDR algorithms.

achieve this using Euclidean-distance, the neighborhoods must be so large that undesirable

topological structures will be represented in the neighborhoods.

Figure 7.4B shows these observations reduced using Isomap with neighborhoods of

size 48. The large number of neighbors was necessary to produce transitive connectivity.

Figure 7.4C shows results with Breadth-first Unfolding (BFU) with neighborhoods of size

48. For comparison, Figure 7.4D shows the actual hidden state of the system. Figure 7.4E

shows results with TNLDR using Isomap. Figure 7.4F shows results with TNLDR using

BFU. TNLDR improved the results from both algorithms. When better distances go into an

NLDR algorithm, better state estimates comes out.
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7.4.2 Modeling Dynamical Systems

Perhaps the best way to demonstrate the utility of TNLDR is to demonstrate its use in

training a model of a dynamical system. This is done with a simple method that we call

State Estimate Induced Training (SEIT). The steps of SEIT are:

1. Use TNLDR to compute X from {Y,A}.

2. Train a regression model, f , with each 〈at,xt〉 → xt+1, where t < n− 1.

3. Train a regression model, g, with each xt → yt, where t < n.

4. Return 〈x0, f, g〉. (Note that x0 ∈ X.)

SEIT uses TNLDR to divide the recurrent model shown in Figure 7.1 into two simpler

parts, f and g, which may each be trained as a static model. SEIT computes a model of

a dynamical system, 〈x0, f, g〉, where x0 is the initial estimate of state, f is a transition

function which specifies how the state changes at each time-step, and g is an observation

function which specifies the relationship between observations and state. If f and g are both

modeled with feed-forward neural networks, then the model as a whole is an Elman recurrent

neural network. SEIT provides a convenient mechanism for validating the effectiveness of

TNLDR, because it may be compared empirically with existing methods for training Elman

recurrent neural networks, such as Backpropagation Through Time (BPTT), evolutionary

optimization, simulated annealing, etc.

In contrast with BPTT, SEIT has several advantages. BPTT must simultaneously

train f and g so that these two functions will learn to cooperate. This makes it highly

susceptible to problems with local optima. Also, BPTT is not suitable for training some

models, such as support vector machines or regression trees. By contrast, SEIT determines

how f and g should cooperate before their training begins, and encodes this information in X.

Thus, f and g can be trained independently, and they are trained against a stationary target.

The NLDR component of TNLDR naturally avoids local optima in the representation of X.
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Figure 7.5: High-dimensional observations may be parameterized with a vector, u, such that
the model predicts only the portion of yt+1 specified by u. For example, if yt+1 is an image,
then g(u,xt+1) could be a prediction of the three channel values (red, green, and blue) of
pixel u in that image.

Further, SEIT can be used to train arbitrary regression models to operate in a recurrent

manner.

We trained a model of the crane system, 〈x0, f, g〉, using SEIT. We modeled f using a

feed-forward neural network with 6 inputs (4 to represent the actions, and 2 from recurrent

connections), one hidden layer of 4 sigmoid units, and 2 output units. We modeled g using a

feed-forward neural network with 4 inputs (2 from f , and 2 to parameterize the image pixel

as shown in Figure 7.5), and two hidden layers. The first hidden layer (in feed-forward order)

contained 15 units, and the second hidden layer contained 30 units. g had 3 output units

(for the three color channels). Together, f and g form a recurrent neural network with 668

weights. We tested five algorithms for training this network from {Y,A}. At 120-second

intervals during training, we measured the root-mean-squared predictive accuracy of each

model, averaged over 5 validation sequences, each one consisting of 40 random actions and

the corresponding observations. Figure 7.6 shows a comparison of the results obtained by

each algorithm. SEIT required almost 500 seconds to compute X using TNLDR, and to train

f . Results for SEIT are only shown during the training of g. (With SEIT, f and g could be

trained in parallel, but we did not utilize this advantage in this experiment.) Three of the

algorithms all arrived at the poor solution of always predicting a completely white image.

With this problem, there is a broad locally-convex region around this solution because the

significant majority of the pixels in the true observation associated with every state is white.

It may be that the evolutionary optimizer would eventually find its way out of this local

optimum, but even if it does, this is a very inefficient solution. We ran that algorithm for 7

117



SEITBPTT

Annealing

Hill climber
Evolutionary opt.

Training time (in seconds)

R
oo

t m
ea
n 
sq
ua
re
d
 e
rr
or

Figure 7.6: Predictive error averaged over 5 unique validation sequences, each with 40 actions
and observations, was measured at 120 second intervals during training with 5 algorithms.
Three algorithms converged to always predict a blank image. BPTT did better. SEIT gave
the best results. Approximately the first 500 seconds were required to compute X and to
train the transition function, so results are shown for SEIT during training of the observation
function.

additional hours, but it did not manage to break out in that time. Backpropagation Through

Time was the closest competitor with SEIT. Unfortunately, it appears to have quickly found

a local optimum from which it never managed to escape. SEIT produced the best results by

a significant margin.

Next, we modified the crane system to add random noise to each hidden state variable

at every transition. The noise was drawn from a Normal distribution with a deviation equal to

5% of the magnitude of the change in state. Random noise was also added to all three channels

of every pixel in the observation. This noise was also drawn from a Normal distribution with

a deviation equal to 5% of the supported range in channel values. Figure 7.7(left) shows a

plot of the actual hidden state of the system, and Figure 7.7(right) shows X as estimated

by TNLDR using Breadth-first Unfolding. Despite the noise in observations, TNLDR was

still able to estimate a good representation of the system state. We note that for training a
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State X

Figure 7.7: A comparison of the true hidden state from the noisy crane system, and the
estimate of state, X, computed by the first three steps of SEIT. To assist a visual comparison
of the structure, each point is shown with a spectrum color according to its position in the
sequence, and lines are also shown to indicate transitions.

model of the system, X does not need to be strictly equivalent to the hidden state, as long as

f and g are able to compensate for differences.

Figure 7.8 shows a comparison of the actual observations from the noisy system,

with predictions from SEIT and BPTT, over a test sequence of 200 random actions. The

observation sequence was predicted from only the test actions, without any feedback from

the system. SEIT predicted each frame clearly, while BPTT made blurry and ambiguous

predictions. With BPTT, the interplay between f and g during training caused the internal

state estimate to fall into a local optima. By contrast, SEIT did a better job of directing how

f and g should mutually behave by computing X.
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Figure 7.8: Samples of actual and predicted observations for a test sequence of actions,
unrelated to A. Predictions were made by the recurrent models from the test actions, without
any feedback from the system. SEIT made accurate and clear predictions, while BPTT made
blurry predictions.
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Figure 7.9: Sample predictions from a model using decision trees for f and g. Existing
algorithms are only suitable for training recurrent neural networks. SEIT can train arbitrary
recurrent models.

7.4.3 Decision Tree Model

In order to demonstrate that TNLDR enables the training of a recurrent version of arbitrary

regression models, not just recurrent neural networks, we trained a decision tree to model

both f and g. Figure 7.9 shows a comparison of actual and predicted observations with this

model. Existing methods for training recurrent neural networks, such as BPTT, are not able

to train models based on decision trees.
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Figure 7.10: A robot’s observations were simulated using a sliding and scaling window over
an image of a warehouse.

7.4.4 Path Planning

We created another system using the image of a warehouse shown in Figure 7.10. The

observations for this system were taken from a small window within this larger image. The

system was equipped with 4 actions, where two of the actions slide the window left or right,

and the other two actions zoom in or out by changing the size of the window. The window is

capable of having a continuous position and size, so we used linear interpolation to generate

a 64× 48 pixel observation image that spans the windowed region of the larger image. The

observations of this system were designed to be similar to those of a robot that navigates

within a warehouse. As with the noisy crane system, we added Gaussian noise to both the

transitions and observations, with the same deviations used in that system.

Additionally, we blocked the system from being able to enter a square region of its

state space. A robot, for example, may be blocked by a large object from entering certain

regions of its state space. Such a robot may need to learn to model its environment even

though it is unable to obtain observations from those regions of its state space. We generated

a new training sequence of 4000 random actions, and obtained a corresponding sequence

of observations from this warehouse system. Figure 7.11 shows a comparison of the actual

hidden state produced by this system, and the estimate of state computed by the first step of

SEIT.

121



Figure 7.11: Left: A plot of the hidden states through which the warehouse system passed
while generating the training observations. Right: A plot of X as computed by the first step
of SEIT. Color is used to indicate the position of points in the ordered sequence.

We modeled this system with a recurrent neural network, where f had one hidden

layer of 4 units, and two context units, and g had two hidden layers. The first hidden layer in

feed-forward order had 20 units, and the second hidden layer had 100 units. We used more

units in g with the warehouse system because its observations contained more detail than

the crane system.

Figure 7.12 shows a comparison of results with this problem using several training

algorithms. Accuracy was measured by averaging over 5 validation sequences of 40 actions

and observations containing both observation noise and transition noise. The transition noise

has a particularly significant impact on predictions because it accumulates in the state over

time, while the observation noise affects only the current observation. Even under these

conditions, SEIT was able to give the best results of any of the algorithms, using either

Isomap or Breadth-first Unfolding.

Next, using only the trained neural network model to predict observations, a human

oracle selected a sequence of actions that would cause the simulated robot to visit certain

locations within its environment. The intrinsic states in this planned path are shown

superimposed over a plot of X in Figure 7.13(left). We then executed the planned sequence
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Figure 7.12: Predictive error with validation data was measured at 120 second intervals
during training with several algorithms. SEIT gave the best results. The choice of NLDR
algorithm used with SEIT made little difference.

Figure 7.13: Left: A path of planned context values chosen by a human based on predicted
observations from the neural network model of the warehouse system. Right: The path of
actual state values through which the system passed when the planned actions were applied
to the system.

of actions with the actual system. Figure 7.13(right) shows the actual hidden state values

through which the system passed as it followed the sequence of actions, superimposed over
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Figure 7.14: Top: Predicted observations from a planned path made using only a model of
the warehouse system. Bottom: The actual observations made when the planned path was
executed with the warehouse system.

the actual state values that correspond with the training observations that were originally

used to train the model. Figure 7.14(top) shows predicted observations at five points along

the planned path. Figure 7.14(bottom) shows the actual observations at those points when

the plan was executed on the system. This experiment demonstrates that the trained model

represented the system with sufficient accuracy that it could facilitate planning in isolation

from the system.

7.5 Conclusions

We presented a new technique called TNLDR, which reduces the dimensionality of observations

from a dynamical system to recover an estimate of the system state. Compared with regular

NLDR, TNLDR uses the additional information found in sequences of observations to remove

the assumption that distances in state space are proportional to distances in observation

space. Because TNLDR removes this assumption, it can compute accurate estimates of

state, even when various factors cause observations to be scaled non-uniformly. TNLDR

has significant potential to lead to further innovations because it extends existing NLDR
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techniques to make them suitable for use in estimating the state of dynamical systems from

high-dimensional observations.

We used a simulated crane system to demonstrate that TNLDR recovers better

estimates of state than existing NLDR techniques. We also demonstrated that TNLDR leads

to a natural method for training models of dynamical systems, called SEIT. We showed that

SEIT does a better job training a recurrent neural network to model the crane system than

existing methods for training recurrent neural networks. We also repeated this experiment

using a system involving a simulated robot in a warehouse. We showed that SEIT is suitable

for training other recurrent models besides neural networks. We also demonstrated that

models trained by SEIT are sufficiently accurate to facilitate planning.

7.5.1 Appendix

This section contains information that was omitted from the published version of this

paper/chapter due to space constraints imposed by the venue. Due to the significance of the

results presented in this section, we include it here as part of this dissertation.

In this section, we report an experiment designed to test the ability of the model

trained with SEIT to generalize about states that were not visited in the training sequence.

This experiment was not performed with the other algorithms because none of them were

able to produce sufficiently comprehensible predictions.

We created a test sequence of 48 actions that follow the path indicated in Figure 7.15.

12 of the 48 states on this path were never visited by the training sequence, and 22 of the 48

state-action pairs on this path were never sampled in the training sequence. We executed this

sequence of actions with the crane system, and with the model trained by SEIT. Calibration

was not used, so the model received no feedback from the system during this execution. Six

frames at significant locations on this path are shown in Figure 7.16.

The prediction at t = 0 is only a measure of how well the neural network g can be

trained to represent the image, since f has not been used at this point at all. The accuracy
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Figure 7.15: A test sequence of 48 actions was designed to pass through regions of the
state-space that were not visited by the training sequence. This sequence begins and ends
with the circled state in the center. 12 of the 48 states on this path were never visited by
the training sequence, and 22 of the 48 state-action pairs on this path were never sampled
in the training sequence. To establish context, 7 points are labeled with the corresponding
observation image from the system.

of subsequent frames, however, depends on the accuracy of both f and g. With this path of

actions, the actual system begins and ends in the same state. Note that the target frame at

t = 0 is the same as at t = 48. The prediction at t = 48, however, shows the ball hanging

slightly too low and slightly off-center. This indicates the extent of the accumulated error in

f over the entire path. The reason f is able to generalize so effectively for state-actions that
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were not in the training sequence is because SEIT was able to arrange the context estimates,

X, in a nearly grid-like arrangement, even though the observations fall on a very non-linear

manifold. The nearly-linear arrangement of context estimates is much more conducive to

accurate generalization.

The generalizing ability of g is tested the most in the predictions near t = 26. Since

the model finished this path (at t = 48) with a predicted observation so close to that of the

actual system, it is reasonable to assume that the context estimate is somewhat accurate

along the entire path. The error between the target and predicted observation at t = 26,

therefore, is mostly due to g, rather than to f . Although there is some obvious distortion in

the prediction at t = 26 (for example, the cable does not hang in a perfectly straight line), we

note that this prediction is sufficient to characterize the state of the system. In other words,

this model is sufficiently accurate for planning purposes. We also note that the predicted

observations become sharp again when the system returns to regions of the state-space with

which it is familiar.

When the observations are high-dimensional, models that use observations for their

estimate of state, rather than computing their own internal representation of context, are

not as well-suited for planning because they are not able to generalize in this manner. Even

slight imprecisions in the model will cause the predictions to drift away from the manifold of

meaningful observations. When an internal estimate of context is used in the model, however,

the dimensionality of that context-space can be limited to match the dimensionality of the

state space of the system. Thus, all possible context vectors have a corresponding state, and

the model can be used for making plans into the distant future.
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Figure 7.16: Target and predicted observations at significant time-steps along the human-
generated path of test actions that was designed to pass through regions of the space that
were not sampled in the training sequence.
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Chapter 8

Missing Value Imputation With Unsupervised Backpropagation

Abstract: Many data mining and data analysis techniques operate on dense matrices

or complete tables of data. Real-world data sets, however, often contain unknown

values. Even many classification algorithms that are designed to operate with missing

values still exhibit deteriorated accuracy. One approach to handling missing values

values is to fill in (impute) the missing values. In this paper, we present a technique

for unsupervised learning called Unsupervised Backpropagation (UBP), which trains a

multi-layer perceptron to fit to the manifold sampled by a set of observed point-vectors.

We evaluate UBP with the task of imputing missing values in datasets, and show that

UBP is able to predict missing values with significantly lower sum-squared error than

other collaborative filtering and imputation techniques. We also demonstrate with 31

datasets and 9 supervised learning algorithms that classification accuracy is usually

higher when randomly-withheld values are imputed using UBP, rather than with other

methods.

8.1 Introduction

Many effective machine learning techniques are designed to operate on dense matrices or

complete tables of data. Unfortunately, real-world datasets often include only samples of

observed values mixed with many missing or unknown elements. Missing values may occur

due to human impatience, human error during data entry, data loss, faulty sensory equipment,
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changes in data collection methods, inability to decipher handwriting, privacy issues, legal

requirements, and a variety of other practical factors. Thus, improvements to methods

for imputing missing values can have far-reaching impact on improving the effectiveness

of existing learning algorithms for operating on real-world data. We present a method for

imputation called Unsupervised Backpropagation (UBP), which trains a multi-layer perceptron

(MLP) to fit to the manifold represented by the known features in a dataset. We demonstrate

this algorithm with the task of imputing missing completely at random (MCAR) values, and

we show that it is significantly more effective than other methods at this task.

Backpropagation has long been a popular method for training neural networks [Rumel-

hart et al., 1986, Werbos, 1990]. A typical supervised approach trains the weights, W, of

a multilayer perceptron (MLP) to fit to some training data, consisting of a set of feature

vectors X = 〈x1,x2, ...,xn〉, and corresponding label vectors Y = 〈y1,y2, ...,yn〉. With

many interesting problems, however, training data is not available in this form. In this

paper, we consider the significantly different problem of training an MLP to estimate the

missing elements of an n× d matrix, X, where each of the d attributes may be continuous or

categorical. Because the missing elements in X must be predicted, it becomes the output of

the MLP, rather than the input. A new set of latent vectors, V = 〈v1,v2, ...,vn〉, will be fed

as inputs into the MLP, but no examples from V are given in the training data. Thus, both

V and W must be trained using only the known elements in X. After training, each vi may

be fed into the MLP to predict all of the elements in xi.

Training in this manner causes the MLP to fit a surface to the (typically non-linear)

manifold sampled by X. After training, V may be considered to be a reduced-dimensional

representation of X. That is, V will be an n× t matrix, where t < d, and the MLP will map

V 7→ X.

UBP accomplishes the task of training an MLP using only the known elements in

X with on-line backpropagation. For each presentation of a known element xr,c ∈ X, UBP
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simultaneously computes a gradient vector g to update the weights W, and a gradient vector

h to update the input vector vr. (xr,c is the element in row r, column c of X.)

As an algorithm, UBP falls at the intersection of several different paradigms. In

neural networks, it is an extension of generative backpropagation [Hinton, 1988] that does

not require the weights to be trained in advance. In collaborative filtering, it may be

considered to be a non-linear generalization of matrix factorization [Koren et al., 2009]. As an

imputation technique, UBP is a refinement of Non-linear PCA [Scholz et al., 2005]. Because

UBP generates V from X, it is a non-linear dimensionality reduction algorithm, and is also

comparable in this paradigm with Non-linear PCA. Because it trains a generalizing MLP

to model the manifold sampled by X, it is also a manifold learning algorithm, and may be

considered to perform a similar task to the latter half of an autoencoder. In Section 8.2, we

further describe the relationship of UBP with each of these existing techniques. In this paper,

we demonstrate UBP as a method for imputing missing values, and show that it outperforms

other approaches at this task. We will defer to future papers to demonstrate UBP with other

applications.

We compare UBP against 5 other imputation methods on a set of 31 data sets. 10%

to 90% of the values are removed from the data sets completely at random. We show that

UBP predicts the missing values with signficantly lower error (as measured by sum-squared

difference with normalized values) than other approaches. We also evaluated 9 learning

algorithms to compare classification accuracy using imputed data sets. Learning algorithms

using imputed data from UBP usually achieve higher classification accuracy than with any of

the other methods. The increase is most significant when 30% to 70% of the data is missing.

The remainder of this paper is organized as follows. Section 8.2 reviews related work

to UBP and missing value imputation. UBP is described in Section 8.3. Section 8.4 presents

the results of comparing UBP with other imputation methods. We provide conclusions and a

discussion of future directions for UBP in Section 8.5.
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8.2 Related Works

The techniques used in UBP were first proposed by Hinton [Hinton, 1988] in a technique he

called “generative backpropagation.” Generative backpropagation adjusts the inputs in a

neural network while holding the weights constant. UBP, by contrast, computes both the

weights and the input values simultaneously. Related approaches have been used to generate

labels for images [Coheh and Shawe-Taylor, 1990], and for natural language [Bengio et al.,

2006]. Although these techniques have been used for labeling images and documents, to our

knowledge, they have not been used for the application of imputing missing values. UBP

differs from generative backpropagation in that it trains the weights simultaneously with the

inputs, instead of training them as a pre-processing step.

UBP may also be classified as a manifold learning algorithm. Like common non-linear

dimensionality reduction (NLDR) algorithms, such as Isomap [Tenenbaum et al., 2000],

MLLE [Zhang and Wang, 2007], or Manifold Sculpting [Gashler et al., 2008b], it reduces

a set of high-dimensional vectors, X, to a corresponding set of low-dimensional vectors, V.

Unlike these algorithms, however, UBP also learns a model of the manifold. Also unlike these

algorithms, UBP is designed to operate with incomplete observations.

UBP may be viewed as a non-linear generalization of matrix factorization (MF). MF

is a linear dimensionality reduction technique that can be effective for collaborative filtering

[Adomavicius and Tuzhilin, 2005] as well as imputation. This method has become a popular

technique, in part due to its effectiveness with the data used in the NetFlix competition

[Koren et al., 2009]. MF involves factoring the data matrix into two much-smaller matrices.

These smaller matrices can then be combined to predict all of the missing values in the

original dataset. It is equivalent to using linear regression to project the data onto its

first few principal components. Unfortunately, MF is not well-suited for data that exhibits

non-linearities. It was previously shown that matrix factorization could be represented with

a neural network model involving one hidden layer and linear activation functions [Takács

et al., 2009]. In comparison with this approach, UBP uses a standard MLP with an arbitrary
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number of hidden layers and non-linear activation functions, instead of the network structure

previously proposed for matrix factorization. MF produces very good results at the task of

imputation, but we demonstrate that UBP does better.

UBP is very similar to an existing method called Nonlinear PCA [Scholz et al., 2005]

(NLPCA), which has been shown to be effective for imputation. This approach also uses

gradient descent to train an MLP to map from low to high-dimensional space. After training,

the weights of the MLP can be used to represent non-linear components within the data.

If these components are extracted one-at-a-time from the data, then they are the principal

components, and NLPCA becomes a non-linear generalization of PCA. Typically, however,

these components are all learned together, so it would more properly be termed a non-linear

generalization of MF. NLPCA was evaluated with the task of missing value imputation

[Scholz et al., 2005], but its relationship to MF was not yet recognized at the time, so it was

not compared against MF. One of the contributions of this paper is that we show NLPCA to

be a significant improvement over MF at the task of imputation. We also demonstrate that

UBP achieves even better results than NLPCA at the same task, and is the best algorithm

for imputation of which we are aware. The primary difference between NLPCA and UBP is

that UBP utilizes a three-phase training approach (described in Section 8.3) which makes it

more robust against falling into a local optimum during training.

UBP is also comparable with the latter-half of an autoencoder [Hinton and Salakhut-

dinov, 2006]. The first half of an autoencoder maps data into low-dimensional space. The

second half of an autoencoder maps the data back to the original space. By comparison,

UBP trains an MLP to map data from low to high-dimensional space. Because each layer

in an MLP adds an increasingly expensive cost in training time, and because UBP trains

a network with half the depth of a corresponding autoencoder, UBP is practical for many

problems for which autoencoders are too computationally expensive.

Since we demonstrate UBP with the application of imputing MCAR values in data, it

is also relevant to consider other approaches that are classically used for this task. Simple
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methods, such as dropping patterns that contain missing values or randomly drawing values

to replace the missing values, are often used based on simplicity for implementation. These

methods, however, have significant obvious disadvantages when data is scarce. Another

common approach is to treat missing elements as having a unique value. This approach,

however has been shown to bias the parameter estimates for multiple linear regression models

[Jones, 1996] and to cause problems for inference with many models [Shafer, 1997]. We take it

for granted that better accuracy is desirable, so these methods should generally not be used,

as better methods do exist. In order to establish a “baseline” for comparison, we compare

with the method of replacing missing values in continuous attributes with the mean of the

non-missing values in that attribute, and replacing missing values in nominal (or categorical)

attributes with the most common value in the non-missing values of that attribute. It is

expected that any reasonable algorithm should outperform this baseline (BL) algorithm with

most problems.

A simple improvement over BL is to compute a separate centroid for each output class.

The disadvantages of this method are that it is not suitable for regression problems, and it

cannot generalize to unlabeled data since it depends on labels to impute. Methods based on

maximum likelihood [Little and Rubin, 2002] have long been studied in statistics, but these

also depend on pattern labels. We restrict our analysis to methods that can generalize, and

therefore must not depend on having labeled data.

Another well-studied approach involves training a supervised learning algorithm to

predict missing values using the non-missing values as inputs [Quinlan, 1989, Lakshminarayan

et al., 1996, Farhangfar et al., 2008]. Unfortunately, the case where multiple values are missing

in one pattern present a difficulty for these approaches. Either a learning algorithm must be

used that implicitly handles missing values in some manner, or an exponential number of

models must be trained to handle each combination of missing values. Further, it has also

been shown that results with these methods tend to be poor when there are high percentages

(more than about 15%) of missing values [Acuña and Rodriguez, 2004].
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One very effective collaborative filtering method for imputation is to cluster the data,

and then make predictions according to the centroid of the cluster in which each point falls.

[Adomavicius and Tuzhilin, 2005] Luengo compared several imputation methods by evaluating

their effect on classification accuracy [Luengo, 2011]. He found cluster-based imputation

with Fuzzy k-Means (FKM) [Li et al., 2004] using Manhattan distance to outperform other

methods, including those involving state of the art machine learning methods and other

methods traditionally used for imputation. Our analysis, however, finds that most of the

methods we compared outperform FKM.

A related imputation method called instance-based imputation (IBI) is to combine

the non-missing values of the k-nearest neighbors of a point to replace its missing values. To

evaluate the similarity between points, cosine correlation is often used because it tends to be

effective in the presence of missing values [Adomavicius and Tuzhilin, 2005, Li et al., 2008,

Sarwar et al., 2001].

Ensemble techniques, such as multiple imputation, have also been shown to be effective

for imputing missing values [Schafer and Graham, 2002]. In this paper, we do not compare

against ensemble methods because UBP involves a single model, and it may be included in

an ensemble as well as any other imputation method.

8.3 Unsupervised Backpropagation

In order to formally describe the UBP algorithm, we define the following terms. The

relationships between these terms are illustrated graphically in Figure 8.1.

1. Let X be a given n× d matrix, which may have many missing elements. We seek to

impute values for these elements. n is the number of instances. d is the number of

attributes.

2. Let V be a latent n× t matrix, where t < d.

3. If xr,c is the element at row r, column c in X, then x̂r,c is the value predicted by the

MLP for this element when vr ∈ V is fed forward into the MLP.

135



XWV

h
g

Backpropagation

Low dimensional High dimensional

^e   x     xr,c r,c=

Figure 8.1: UBP trains an MLP to fit to high-dimensional observations, X. For each known
xr,c ∈ X, it uses backpropagation to compute the gradient vectors g and h, which are used
to update the weights, W, and the input vector vr.

4. Let wij be the weight that feeds from unit i to unit j in the MLP.

5. For each network unit, i, let βi be the net input into the unit, let αi be the output or

activation value of the unit, and let ei be an error term associated with the unit.

6. Let f be the activation function used in every unit, and let f ′(βi) be the derivative of

f with respect to βi. In our implementation, we use the logistic function for f .

7. Let l be the number of hidden layers in the MLP.

8. Let g be a vector representing the gradient with respect to the weights of an MLP, such

that gi,j is the component of the gradient that is used to refine wi,j.

9. Let h be a vector representing the gradient with respect to the inputs of an MLP, such

that hi is the component of the gradient that is used to refine vr,i ∈ vr.

Using backpropagation to compute g, the gradient with respect to the weights, is

a common operation for training MLPs [Rumelhart et al., 1986, Werbos, 1990]. Using

backpropagation to compute h, the gradient with respect to the inputs, however, is much

less common, so we provide a derivation of it here. In this deriviation, we compute each

hi ∈ h from the presentation of a single element xr,c ∈ X. It could also be derived from
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the presentation of a full row (which is typically called “on-line training”), or from the

presentation of all of X (“batch training”), but since we assume that X is high-dimensional

and is missing many values, it is more efficient to train with the presentation of each known

element individually. We begin by expressing the partial derivative of the error signal with

respect to the inputs as given in Equation 8.1. We assume that sum-squared error is used for

this objective function, although other objective functions could be used as well.

hi =
∂ 1

2
(xr,c − x̂r,c)2

∂vr,i
(8.1)

By applying the chain rule to Equation 8.1 and then expanding, we obtain

hi =
−(xr,c − x̂r,c)f ′(αc)

∑
j wj,c∂βj

∂vr,i
. (8.2)

If l = 0, then βj ≡ vr,i, so the partial derivative terms in the numerator and denom-

inator cancel out. The error term ec is then substituted into the equation to simplify it

to

hi = −wi,cec. (8.3)

If l > 0, then βj can be expanded to obtain

hi =
−(xr,c − x̂r,c)f ′(αc)

∑
j wj,c∂f

′(αj)
∑

k wk,j∂βk

∂vr,i
. (8.4)

If l = 1, then βk ≡ vr,i. If l > 1, then βk can be further expanded in the same manner

until the partial derivative term in the numerator cancels out the denominator. At that point,

the error terms for the earliest (adjacent to the inputs) hidden layer are plugged into the

equation to simplify it to

hi = −
∑
j

wi,jej. (8.5)

137



8.3.1 3-phase Training

UBP trains V and W in three phases. The first phase computes an initial estimate for V.

The second phase computes an initial estimate for W. The third phase refines them both

together. All three phases train using an approach derived from backpropagation. That is,

they compute an error term for each output and hidden unit in the MLP, then adjust V

and/or W by a small amount in the opposite direction of the error surface gradient. We

now briefly give an intuitive justification for this approach. In our initial experimentation,

we used the simpler approach of training in a single phase. With several problems, we

observed that early during training, the intrinsic point vectors, vi ∈ V, tended to separate

into clusters. The points in each cluster appeared to be unrelated, as if they were arbitrarily

assigned to one of the clusters by their random initialization. As training continued, the MLP

effectively created a separate mapping for each cluster in the intrinsic representation to the

corresponding values in X. While it is technically possible for an MLP to operate effectively

under these conditions, it seems natural that results would be better if the points in V were

not separated into clusters. This is achieved through 3-phase training by initializing V and

W separately before refining them together.

8.3.2 Algorithm Description

Pseudo-code for the UBP algorithm, which trains V and W in three phases, is given

in Algorithm 1. This algorithm calls Algorithm 2, which performs a single epoch of training.

A detailed description of Algorithm 1 follows.

A matrix containing the known data values, X, is passed in to UBP (See Algorithm 1).

It returns V and W. V is matrix such that each row, vi, is a low-dimensional representation

of the corresponding row, xi. W is a set or ragged matrix containing weight values for an

MLP that maps from each vi to an approximation of xi ∈ X. vi may be forward-propagated

into this MLP to estimate values for any missing elements in xi.
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Algorithm 1 UBP(X)

1: Initialize each element in V with small random values.
2: Let T be the weights of a single-layer perceptron
3: Initialize each element in T with small random values.
4: α← 0.01; β ← 0.0001; γ ← 0.00001; λ← 0.0001
5: η ← α; s′ ←∞ Phase 1: Compute initial estimate for V.
6: while η > β do
7: s← train epoch(X,T, λ, true, 0)
8: if 1− s/s′ < γ then η ← η/2
9: s′ ← s

10: end while
11: Let W be the weights of a multi-layer perceptron with l hidden layers, l ≥ 0
12: Initialize each element in W with small random values.
13: η ← α; s′ ←∞ Phase 2: Compute initial estimate for W.
14: while η > β do
15: s← train epoch(X,W, λ, false, l)
16: if 1− s/s′ < γ then η ← η/2
17: s′ ← s
18: end while
19: η ← α; s′ ←∞ Phase 3: Refine V and W together.
20: while η > β do
21: s← train epoch(X,W, 0, true, l)
22: if 1− s/s′ < γ then η ← η/2
23: s′ ← s
24: end while
25: return {V,W}

Lines 1-9 perform the first phase of training, which computes an initial estimate

for V. Line 1 of Algorithm 1 initializes the elements in V with small random values. Our

implementation draws values from a Normal distribution with a mean of 0 and a deviation

of 0.01. Lines 2-3 initialize the weights, T of a single-layer perceptron using the same

mechanism. This single-layer perceptron is a temporary model that is only used in phase 1

to assist the initial training of V. Line 4 sets some default parameter values. α specifies

an initial learning rate. The learning rate is decayed during training, such that convergence

is detected when it falls below β. γ specifies the portion of improvement that is expected

after each epoch, or else the learning rate is decayed. λ is a regularization term that is used

during the first two phases to ensure that the weights do not become excessively saturated
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Algorithm 2 train epoch(X,W, λ, p, l)

1: for each known xr,c ∈ X in random order do
2: Compute αc by forward-propagating vr into an MLP with weights W.
3: ec ← (xr,c − αc)f ′(βc)
4: for each hidden unit i feeding into output unit c do
5: ei ← wi,cecf

′(βi)
6: end for
7: for each hidden unit j in an earlier hidden layer (in backward order) do
8: ej ←

∑
k wj,kekf

′(βj)
9: end for

10: for each wi,j ∈W do
11: gi,j ← −ejαi
12: end for
13: W←W − η(g + λW)
14: if p = true then
15: for i from 0 to t− 1 do
16: if l = 0 then hi ← −wi,cec else hi ← −

∑
j wi,jej

17: end for
18: vr ← vr − η(h + λvr)
19: end if
20: end for
21: s← measure RMSE with X
22: return s

before the final phase of training. No regularization is used in the final phase of training

because we want the MLP to ultimately fit the data as closely as possible. (Overfit can still

be mitigated by limiting the number of hidden units used in the MLP.) Although minor

adjustments to these parameters will proportionally affect when convergence is detected, we

found this to have little influence on the quality of results, so we used the default values in

all of our reported results. Line 5 sets the learning rate, η, to the initial value. The value s′

is used to store the previous error score. As no error has yet been measured, it is initialized

to ∞. Lines 6-9 train V and T until convergence is detected. T may then be discarded.

Lines 10-16 perform the second phase of training. This phase differs from the first phase

in two ways: 1) The MLP is used instead of a temporary single-layer perceptron, and 2)

V is held constant during this phase. Lines 17-21 perform the third phase of training. In
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this phase, the same MLP is used again, but V and W are both refined together. Also, no

regularization is used in the third phase.

Next, we describe Algorithm 2, which performs a single epoch of training. This

algorithm is very similar to an epoch of traditional backpropagation, except that it presents

each element individually, and it conditionally refines the values in V as well as the values in W.

Line 1 presents each known element xr,c ∈ X in random order. Line 2 computes a predicted

value for the presented element given the current vr. Note that efficient implementations of

line 2 should only propagate values into output unit c. Lines 3-7 compute an error term for

output unit c, and each hidden unit in the network. The activation of the other output units

is not computed, so the error on those units is 0. Lines 8-10 refine W by gradient descent.

Line 11 specifies that V should only be refined during phases 1 and 3. Lines 12-14 refine

V by gradient descent. Line 15 computes the root-mean-squared-error of the MLP for each

known element in X.

In order to enable UBP to process nominal (categorical) attributes, we convert such

values to a vector representing a membership weight in each category. For example, a given

value of “cat” from the value set {“mouse”,“cat”,“dog”} is represented with the vector in

〈0, 1, 0〉. Unknown values in this attribute are converted to 3 unknown real values, requiring

the algorithm to make 3 predictions. After missing values are imputed, we convert the data

back to its original form by finding the mode of each categorical distribution. For example,

the predicted vector 〈0.4, 0.25, 0.35〉 would be converted to a prediction of “mouse”.

8.4 Empirical Validation

In order to evaluate the effectiveness of UBP and related imputation techniques, we gathered

a set of 31 common datasets: {arrhythmia, breast-w, bupa, cars, colic, credit-g, diabetes, ecoli,

glass, heart-statlog, hepatitis, hypothyroid, ionosphere, iris, labor, letter, magic telescope,

mushroom, nursery, ozone, primary-tumor, segment, sonar, spambase, spectrometer, teach-

ing assistant, vehicle, vote, vowel, wine, and yeast}. To ensure an objective evaluation,
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Figure 8.2: A comparison of the average sum-squared error in each pattern by 5 imputation
techniques over a range of sparsity values with two representative datasets. (Lower is better.)
The trends exhibited in these datasets were similar to those in other datasets. At the 0.5 and
0.7 sparsity levels, MF, NLPCA, and UBP did much better than other imputation techniques.
Overall, UBP did better than all other algorithms.

this collection was determined before evaluation was performed, and was not modified to

emphasize favorable results. To ensure that our results would be applicable for tasks that

require generalization, we removed the class labels from each dataset so that only the input

features could be used for imputing missing values. We normalized all real-valued attributes

to fall within a range from 0 to 1 so that every attribute would carry approximately equal

weight in our evaluation. We then removed completely at random1 u% of the values from

each dataset, where u ∈ {10, 30, 50, 70, 90}.

For each dataset, and for each u, we generated 10 datasets with missing values, each

using a different random number seed, to make a total of 1550 tasks for evaluation. The

task for each of the algorithms was to restore these missing values. We measured error

by comparing each predicted (imputed) value with the corresponding original normalized

1Other categories of “missingness”, besides missing completely at random (MCAR), have been studied
[Little and Rubin, 2002], but we restrict our analysis to the imputation of MCAR values.
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value, summed over all attributes in the dataset. For nominal (categorical) values, we used

Hamming distance, and for real values, we used the squared difference between the original

and predicted values. The average error was computed over all of the patterns in each dataset.

We tested 6 imputation algorithms: baseline (BL), fuzzy k-means (FKM), instance-

based imputation (IBI), matrix factorization (MF), Nonlinear PCA (NLPCA) and Unus-

pervised Backpropagation (UBP). With each algorithm-task pair, we tested a variety of

algorithmic parameter values. BL has no parameters. With FKM, we varied k (the number

of clusters) over the set {4, 8, 16}, we varied the LP -norm value for computing distance over

the set {1, 1.5, 2} (Manhattan distance to Euclidean distance), and the fuzzification factor

over the set {1.3, 1.5} which were reported to be the most effective values [Li et al., 2004].

With IBI, we used cosine correlation to evaluate similarity, and we varied k (the number of

neighbors) over the set {1, 5, 21}. These values were selected because they were all odd, and

spanned the range of intuitively suitable values. With MF, we varied the number of intrinsic

values over the set {2, 8, 16}, and the regularization term over the set {0.001, 0.01, 0.1}. Again,

these values were selected to span the range of intuitively suitable values. With NLPCA, we

varied the number of hidden units over the set {0, 8, 16}, and the number of intrinsic values

over the set {2, 8, 16}. In the case of 0 hidden units, only a single layer of sigmoid units

was used. With UBP, the parameters were varied over the same ranges as those of NLPCA.

Thus, we imputed missing values in a total of 75950 dataset scenarios. For each algorithm,

we found the set of parameters that yielded the best results, and we compared only these

best results for each algorithm averaged over the ten runs of differing random seeds.

Figure 8.2 shows two representative comparisons of the error scores obtained by each

algorithm at varying levels of sparsity. Comparisons with other datasets generally exhibited

similar trends. MF, NLPCA, and UBP did much better than other algorithms when 50% or

70% of the values were missing. No algorithm was best in every case, but UBP achieved the

best score in more cases than any other algorithm. Table 8.1 summarizes the results of these

comparisons. UBP achieved lower error than the other algorithm in 21 out of 25 pair-wise
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comparisons, each comparing imputation scores with 31 datasets averaged over 10 runs with

different random seeds.

We also performed experiments designed to determine whether the improved imputa-

tion accuracy of UBP would lead to better classification accuracy. We compared classification

accuracy from 9 learning algorithms from the WEKA [Witten and Frank, 2005] toolkit:

C4.5 [Quinlan, 1993], backpropagation, nearest neighbor with generalization [Martin, 1995],

locally weighted learning [Atkeson et al., 1997], 5-nearest neighbor, ridor (RIpple DOwn

RUle learner) [Gaines and Compton, 1995], RIPPER (Repeated Incremental Pruning to

Produce Error Reduction) [Cohen, 1995], and näıve Bayes. The learning algorithms were

chosen with the intent of being diverse from one another, where diversity is determined using

unsupervised meta-learning [Lee and Giraud-Carrier, 2011]. We evaluated each learning

algorithm with 10-fold cross-validation at the previously mentioned sparsity levels using each

imputation algorithm with the parameters for each algorithm that resulted in the lowest SSE

error score for imputation. The classification accuracies from this experiment are shown in

Table 2. The best (highest) scores are in bold. The number of times that UBP achieves

a better, equal, and lower accuracy on the data sets is shown in Table 8.3 along with the

p-value from the Wilcoxon signed ranks test. At sparsity level 0.1, IBI achieves the highest

classification accuracy by a narrow margin. NLPCA and UBP perform similarly and their

results are not statistically different. From sparsity level 0.3 to sparsity level 0.7, NLPCA

and UBP achieve the highest average classification accuracy for all of the learning algorithms

and overall (except for näıve Bayes at the 0.3 sparsity level). With more data missing at the

higher sparsity levels, the NLPCA and UBP outperform the other methods because they are

better able to extract correlations between the features.

At sparsity levels 0.5 to 0.9, UBP is statistically significantly better than NLPCA for

improving classification accuracy. With sparser data, the extra phases for initializing the data

and refining the intrinsic variables extract more information from the remaining data. At

sparsity level 0.9, however, the baseline method achieves the highest classification accuracy.
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The number of times imputation with UBP leads to higher, equal, or lower classification

accuracy than other imputation methods in pair-wise comparisons, as well as the Wilcoxon

signed-ranks test p-values, are shown in Tables 8.3 and 8.4. Table 8.3 shows the counts and

significance at each sparsity level. Table 8.4 shows the same information aggregated over all

of the sparsity levels. Imputation with UBP leads to higher classification accuracy with all

learning algorithms in the majority of cases. Cases where UBP resulted in better accuracy in

the majority of cases are shown in bold. The p-values that indicate statistical significance

has been demonstrated are also shown in bold. Overall, imputation with UBP increases the

classification accuracy more than with any other algorithm, but especially for the 0.5 to 0.9

sparsity levels. In the cases where another imputation method leads to higher accuracy than

UBP, the increase is not significant except for the baseline algorithm at the 0.9 sparsity level.

8.5 Conclusions

We presented a method called Unsupervised Backpropagation (UBP) that trains a multi-layer

perceptron to fit to a non-linear manifold sampled by partial observations. We demonstrated

that UBP is well-suited for the task of imputing missing values in data. We compared

results from UBP with 5 other imputation techniques, including baseline, fuzzy k-means,

instance-based imputation, matrix factorization, and Nonlinear PCA, with 31 datasets across

a range of parameters for each algorithm. UBP predicts missing values with lower error than

any of these other methods in the majority of cases. We also demonstrated that using UBP to

impute missing values leads to better classification accuracy than any of the other imputation

techniques over all, and at more specific sparsity levels than any other imputation technique.

The reason UBP does better than the closely related Nonlinear PCA is because it

utilizes a 3-phase training approach that causes the intrinsic points to be arranged in a

globally-representative manner, rather than separated into disjoint clusters. This implies

that UBP may also be better-suited for use as a manifold learning technique. Ongoing

research seeks to demonstrate the utility of UBP in manifold learning tasks. This potential
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direction is compelling because, unlike many existing manifold learning algorithms, UBP

trains a generalizing model, it can operate on incomplete observations, and it requires no

neighbor-finding step. We anticipate that these unique properties may make it well-suited for

problems that existing algorithms cannot handle.
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Table 8.1: A high-level summary of comparisons between UBP and five other imputation
techniques. Results are shown for each of 5 sparsity values. Each row in this table summarizes
a comparison between UBP and a competitor algorithm for imputing values in 31 datasets.
With each dataset, imputation was performed ten times, each time with different values
removed at random. The average accuracy over the ten runs was compared. Only the
parameter values that maximized accuracy were used with each algorithm. In 21 out of 25
summary comparisons, UBP did better in the majority of tests. The counts for these cases
are shown in bold. In 10 summary comparisons, UBP did better in a sufficient number of
cases to demonstrate statistical significance by the Wilcoxon signed ranks significance test
(P < 0.05). The P-values for these cases are shown in bold.

Sparsity Algorithm # of cases UBP did P-value
better (out of 31)

0
.1

BL 25 ≈ 0
FKM 20 0.128
IBI 17 0.473
MF 15 0.550

NLPCA 19 0.066

0
.3

BL 23 0.004
FKM 19 0.168
IBI 19 0.200
MF 17 0.519

NLPCA 19 0.273

0
.5

BL 23 0.005
FKM 22 0.009
IBI 22 0.025
MF 19 0.473

NLPCA 20 0.184

0
.7

BL 20 0.018
FKM 23 0.029
IBI 22 0.024
MF 15 0.632

NLPCA 16 0.314

0
.9

BL 13 0.573
FKM 24 0.008
IBI 22 0.040
MF 22 0.088

NLPCA 10 0.835
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Table 8.2: Classification accuracy with 9 supervised learning algorithms measured using
10-fold cross-validation on data with features that had been partially removed and then
imputed using various imputation techniques. In each case, the parameters for the imputation
algorithm that resulted in the smallest error were used. The highest classification accuracy in
each task is shown in bold. When 10% of the values were imputed, IBI resulted in the best
classification accuracy. When 50% or 70% of the values were imputed, UBP resulted in the
best classification accuracy. In the largest number of cases, and on average, UBP resulted in
the best classification accuracy. In cases where another algorithm did better, the margin was
typically small.

C4.5 NB BP NNg LWL Rid IB5 RIP RF Ave

0
.1

BL 0.766 0.721 0.780 0.765 0.683 0.757 0.762 0.755 0.795 0.754
MF 0.776 0.720 0.798 0.772 0.686 0.762 0.772 0.762 0.802 0.761
FKM 0.772 0.722 0.784 0.768 0.685 0.758 0.764 0.759 0.794 0.756
IBI 0.785 0.727 0.801 0.777 0.696 0.768 0.773 0.774 0.804 0.767
NLPCA 0.779 0.714 0.796 0.771 0.686 0.772 0.769 0.763 0.802 0.761
UBP 0.780 0.718 0.798 0.775 0.686 0.768 0.771 0.762 0.800 0.762

0
.3

BL 0.723 0.692 0.731 0.716 0.645 0.701 0.697 0.708 0.744 0.706
MF 0.728 0.687 0.749 0.722 0.662 0.716 0.712 0.719 0.747 0.716
FKM 0.718 0.681 0.729 0.711 0.646 0.701 0.697 0.704 0.733 0.702
IBI 0.726 0.693 0.744 0.719 0.664 0.709 0.713 0.712 0.744 0.714
NLPCA 0.735 0.683 0.745 0.724 0.662 0.718 0.715 0.721 0.754 0.718
UBP 0.730 0.678 0.743 0.723 0.658 0.726 0.714 0.722 0.746 0.715

0
.5

BL 0.677 0.653 0.678 0.667 0.605 0.643 0.640 0.656 0.692 0.657
MF 0.675 0.650 0.698 0.671 0.620 0.667 0.655 0.660 0.694 0.666
FKM 0.666 0.637 0.678 0.656 0.610 0.636 0.632 0.647 0.682 0.649
IBI 0.675 0.652 0.682 0.660 0.617 0.648 0.644 0.649 0.680 0.656
NLPCA 0.687 0.640 0.698 0.672 0.621 0.672 0.658 0.665 0.699 0.668
UBP 0.686 0.643 0.698 0.674 0.631 0.676 0.660 0.675 0.701 0.672

0
.7

BL 0.623 0.580 0.624 0.605 0.571 0.597 0.581 0.599 0.628 0.601
MF 0.618 0.598 0.626 0.594 0.590 0.609 0.583 0.605 0.615 0.604
FKM 0.609 0.572 0.615 0.593 0.563 0.588 0.576 0.592 0.614 0.591
IBI 0.607 0.594 0.613 0.599 0.569 0.584 0.579 0.594 0.619 0.595
NLPCA 0.617 0.581 0.630 0.609 0.591 0.600 0.598 0.604 0.627 0.607
UBP 0.623 0.586 0.629 0.607 0.596 0.622 0.596 0.614 0.633 0.612

0
.9

BL 0.540 0.457 0.536 0.497 0.526 0.531 0.523 0.534 0.536 0.520
MF 0.532 0.493 0.531 0.495 0.525 0.523 0.491 0.528 0.509 0.514
FKM 0.537 0.474 0.533 0.486 0.517 0.521 0.516 0.522 0.540 0.516
IBI 0.521 0.484 0.521 0.489 0.520 0.523 0.511 0.523 0.520 0.512
NLPCA 0.533 0.434 0.542 0.499 0.528 0.514 0.500 0.514 0.508 0.508
UBP 0.533 0.493 0.529 0.505 0.521 0.526 0.503 0.528 0.522 0.518

A
v
e

BL 0.666 0.621 0.670 0.650 0.606 0.646 0.641 0.650 0.679 0.648
MF 0.666 0.630 0.680 0.651 0.617 0.656 0.643 0.655 0.673 0.652
FKM 0.660 0.617 0.668 0.643 0.604 0.641 0.637 0.645 0.673 0.643
IBI 0.663 0.630 0.672 0.649 0.613 0.646 0.644 0.651 0.673 0.649
NLPCA 0.670 0.610 0.682 0.655 0.618 0.655 0.648 0.654 0.678 0.652
UBP 0.670 0.624 0.679 0.657 0.618 0.664 0.649 0.660 0.680 0.656
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Table 8.3: Counts: The number of times classification accuracy with UBP-imputed data was
better, equal, and worse than classification accuracy with the algorithm specified in the column
header. Cases where UBP did better more times than the compared imputation method
are bolded. P-values: The one-tailed P-value computed using the Wilcoxon Signed-Rank
Significance Test. Cases where UBP did significantly better (P < 0.05) are bolded.

C4.5 NB BP NNg LWL Rid IB5 RIP RF Overall

0
.1

C
o
u
n
ts

BL 22,1,8 16,4,11 24,1,6 18,4,9 18,4,9 21,1,9 20,1,1020,0,1119,0,12 139,16,62
MF 17,2,1218,1,1217,2,1217,2,12 15,7,9 18,2,1117,1,1318,3,1017,1,13 119,17,81
FKM 21,2,8 14,5,1220,1,10 22,0,9 16,5,10 20,3,8 21,1,9 19,1,1119,2,10 134,17,66
IBI 13,3,15 12,3,16 15,1,15 19,2,10 12,5,14 15,2,1416,0,15 15,0,16 12,1,18 102,16,99
NLPCA 13,6,1212,8,11 15,8,8 14,7,10 13,10,8 10,6,15 12,9,10 15,8,8 10,7,14 89,54,74

P
-v
a
lu
es

BL 0.001 0.217 0.001 0.035 0.087 0.005 0.005 0.009 0.088 ≈ 0
MF 0.087 0.217 0.225 0.060 0.299 0.065 0.387 0.120 0.475 0.005
FKM 0.010 0.315 0.019 0.014 0.187 0.027 0.018 0.024 0.046 ≈ 0
IBI 0.616 0.855 0.363 0.182 0.893 0.381 0.346 0.703 0.718 0.783
NLPCA 0.543 0.228 0.185 0.124 0.093 0.774 0.173 0.093 0.784 0.076

0
.3

C
o
u
n
ts

BL 18,1,12 9,4,18 19,1,1116,3,12 21,2,8 19,3,9 19,2,1017,1,1312,2,17 121,16,80
MF 16,3,1214,3,1411,2,1816,1,14 15,4,12 21,2,8 20,2,9 17,1,1316,3,12 113,17,87
FKM 19,2,1018,1,12 22,0,9 19,2,10 21,2,8 21,1,9 23,1,7 20,0,1118,0,13 143,9,65
IBI 16,1,14 13,1,17 18,0,1316,2,13 12,3,16 19,2,1017,0,1420,0,1118,0,13 111,9,97
NLPCA 10,4,17 12,5,14 12,5,14 9,8,14 12,6,13 18,5,8 14,5,1213,6,12 9,6,16 87,38,92

P
-v
a
lu
es

BL 0.236 0.905 0.029 0.135 0.008 0.004 0.026 0.157 0.643 ≈ 0
MF 0.320 0.734 0.952 0.459 0.524 0.018 0.109 0.296 0.281 0.167
FKM 0.025 0.217 0.009 0.030 0.026 0.002 0.006 0.017 0.065 ≈ 0
IBI 0.255 0.848 0.246 0.182 0.784 0.008 0.318 0.085 0.360 0.036
NLPCA 0.852 0.745 0.490 0.790 0.676 0.049 0.315 0.637 0.966 0.775

0
.5

C
o
u
n
ts

BL 16,2,13 12,4,15 18,2,1117,2,12 19,3,9 22,3,6 15,3,1318,2,11 13,2,16 119,19,79
MF 18,1,12 13,3,15 19,1,1119,1,11 15,4,12 19,3,9 17,0,14 23,0,8 16,2,13 120,13,84
FKM 20,1,1016,1,1418,2,11 20,3,8 18,2,11 22,2,7 19,2,1020,0,1119,0,12 133,13,71
IBI 19,1,1115,2,14 22,2,7 19,1,11 16,4,11 24,1,6 20,1,10 23,1,7 24,0,7 135,12,70
NLPCA 12,7,12 15,6,1014,4,13 19,4,8 14,7,10 14,5,1214,6,11 17,5,9 13,4,14 102,39,76

P
-v
a
lu
es

BL 0.176 0.627 0.044 0.160 0.013 ≈ 0 0.155 0.018 0.381 ≈ 0
MF 0.035 0.594 0.379 0.311 0.067 0.022 0.246 0.002 0.101 ≈ 0
FKM 0.010 0.172 0.050 0.007 0.022 ≈ 0 0.014 0.003 0.065 ≈ 0
IBI 0.035 0.602 0.011 0.012 0.064 ≈ 0 0.019 0.001 ≈ 0 ≈ 0
NLPCA 0.350 0.195 0.590 0.043 0.025 0.149 0.295 0.055 0.514 0.004

0
.7

C
o
u
n
ts

BL 10,2,19 17,1,1317,0,1418,1,12 19,2,10 15,2,1417,1,1316,1,14 15,0,16 113,9,95
MF 15,1,15 16,1,1416,1,1419,1,11 17,3,11 16,2,1318,0,1319,0,12 23,0,8 117,9,91
FKM 15,1,15 20,0,1116,0,1520,0,11 21,1,9 17,1,1317,1,1318,0,1318,1,12 126,4,87
IBI 18,3,1016,0,1520,1,1021,0,10 23,2,6 23,2,6 17,2,12 22,1,8 19,1,11 138,10,69
NLPCA 14,8,9 12,8,1113,6,12 12,6,13 11,10,10 16,6,9 13,6,12 11,8,12 14,4,13 91,50,76

P
-v
a
lu
es

BL 0.891 0.230 0.240 0.435 0.025 0.052 0.116 0.125 0.565 0.013
MF 0.311 0.621 0.242 0.037 0.135 0.071 0.063 0.049 0.001 ≈ 0
FKM 0.211 0.088 0.168 0.058 0.010 0.018 0.121 0.041 0.052 ≈ 0
IBI 0.024 0.654 0.012 0.159 0.002 0.002 0.057 0.006 0.064 ≈ 0
NLPCA 0.098 0.352 0.277 0.758 0.255 0.008 0.511 0.115 0.171 0.007

0
.9

C
o
u
n
ts

BL 8,4,19 25,0,6 11,4,16 19,3,9 8,4,19 11,3,17 5,0,26 11,2,18 8,0,23 87,18,112
MF 16,2,13 13,0,18 16,1,1419,2,10 14,2,15 13,2,16 21,0,1016,3,12 22,3,6 112,9,96
FKM 11,4,16 17,0,14 14,2,15 20,1,10 16,2,13 14,3,14 11,0,20 15,1,15 11,0,20 103,12,102
IBI 18,3,1020,0,1117,3,11 22,2,7 13,2,16 17,2,1214,0,1718,0,13 14,1,16 121,12,84
NLPCA 10,6,15 18,5,8 6,5,20 17,4,10 10,6,15 18,5,8 14,4,13 19,6,6 15,3,13 93,35,89

P
-v
a
lu
es

BL 0.939 ≈ 0 0.901 0.057 0.841 0.688 ≈ 1 0.929 0.997 0.974
MF 0.466 0.542 0.621 0.029 0.667 0.586 0.076 0.281 0.003 0.019
FKM 0.835 0.088 0.735 0.014 0.357 0.312 0.972 0.282 0.993 0.581
IBI 0.057 0.098 0.077 0.003 0.491 0.287 0.822 0.173 0.557 0.010
NLPCA 0.676 ≈ 0 0.997 0.148 0.732 0.021 0.294 0.001 0.077 0.002
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Table 8.4: Counts: The number of times that classification accuracy with UBP-imputed
data was better, approximately equal (to 4 significant figures), and worse than classification
accuracy with the algorithm specified in the column header. Cases where UBP is not better
more times than the compared imputation method are bolded. P-values: The one-tailed
P-value computed using the Wilcoxon Signed-Rank Significance Test. Cases where UBP is
significantly better (P < 0.05) are bolded.

C4.5 NB BP NNg LWL Rid IB5 RIP RF Overall

C
ou

n
ts

BL 74,10,7179,13,6389,8,5888,13,5485,15,5588,12,55 76,7,72 82,6,67 67,4,84 579,78,428
MF 82,9,64 74,8,73 79,7,69 90,7,58 76,20,5987,11,57 93,3,59 93,7,55 94,9,52 581,65,439
FK 86,10,59 85,7,63 90,5,60101,6,4892,12,5194,10,51 91,5,59 92,2,61 85,3,67 639,55,391
IB 84,11,60 76,6,73 92,7,56 97,7,51 76,16,63 98,9,48 84,3,68 98,2,55 87,3,65 607,59,419
NL 59,31,65 69,32,5460,28,6771,29,5560,39,5676,27,5267,30,5875,33,4761,24,70462,216,407

P
-v

al
u

es

BL 0.215 0.039 0.003 0.006 0.001 ≈ 0 0.092 0.008 0.758 ≈ 0
MF 0.032 0.636 0.523 0.004 0.101 0.002 0.008 0.001 ≈ 0 ≈ 0
FK 0.003 0.015 0.003 ≈ 0 ≈ 0 ≈ 0 0.005 ≈ 0 0.058 ≈ 0
IB 0.003 0.657 0.001 ≈ 0 0.084 ≈ 0 0.051 ≈ 0 0.019 ≈ 0
NL 0.454 0.008 0.754 0.127 0.121 0.001 0.149 0.001 0.454 ≈ 0
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Chapter 9

Waffles: A Machine Learning Toolkit

Abstract: We present a breadth-oriented collection of cross-platform command-line

tools for researchers in machine learning called Waffles. The Waffles tools are designed

to offer a broad spectrum of functionality in a manner that is friendly for scripted

automation. All functionality is also available in a C++ class library. Waffles is

available under the GNU Lesser General Public License.

9.1 Introduction

Although several open source machine learning toolkits already exist [Sonnenburg et al.,

2007], many of them implicitly impose requirements regarding how they can be used. For

example, some toolkits require a certain platform, language, or virtual machine. Others are

designed such that tools can only be connected together with a specific plug-in, filter, or

signal/slot architecture. Unfortunately, these interface differences create difficulty for those

who have become familiar with a different methodology, and for those who seek to use tools

from multiple tookits together. Toolkits that use a graphical interface may be convenient for

performing common experiments, but become cumbersome when the user wishes to use a

tool in a manner that was not foreseen by the interface designer, or to automate common

and repetitive tasks.

Waffles is a collection of tools that seek to provide a wide diversity of useful operations

in machine learning and related fields without imposing unnecessary process or interface
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restrictions on the user. This is done by providing simple command-line interface (CLI) tools

that perform basic tasks. The CLI is ideal for this purpose because it is well-established, it

is available on most common operating systems, and it is accessible through most common

programming languages. Since these tools perform operations at a fairly granular level, they

can be used in ways not foreseen by the interface designer.

As an example, consider an experiment involving the following seven steps:

1. Use cross-validation to evaluate the accuracy of a bagging ensemble of one-hundred

decision trees for classifying the lymph data set (available at http://MLData.org).

2. Separate this data set into a matrix of input-features and a matrix of output-labels.

3. Convert input-features to real-valued vectors by representing each nominal attribute as

a categorical distribution over possible values.

4. Use principal component analysis to reduce the dimensionality of the feature-vectors.

5. Use cross-validation to evaluate the accuracy of the same model on the data with

reduced features.

6. Train the model using all of the reduced-dimensional data.

7. Visualize the model-space represented by the ensemble.

These seven operations can be performed with Waffles tools using the following CLI

commands:

1. waffles learn crossvalidate lymph.arff bag 100 decisiontree end

2. waffles transform dropcolumns lymph.arff 18 > features.arff

waffles transform dropcolumns lymph.arff 0-17 > labels.arff

3. waffles transform nominaltocat features.arff > f real.arff

4. waffles dimred pca f real.arff 2 > f reduced.arff

5. waffles transform mergehoriz f reduced.arff labels.arff > all.arff

waffles learn crossvalidate all.arff bag 100 decisiontree end

6. waffles learn train all.arff bag 100 decisiontree end > ensemble.model
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7. waffles plot model ensemble.model all.arff 0 1

The cross-validation performed in step 1 returns a predictive accuracy score of 0.781.

Step 5 returns a predictive accuracy score of 0.705. The plot generated by step 7 is shown in

Figure 9.1.

It is certainly conceivable that a graphical interface could be developed that would

make it easy to perform an experiment like this one. Such an interface might even provide

some mechanism to automatically perform the same experiment over an array of data sets,

and using an array of different models. If, however, the user needs to vary a parameter

specific to the experiment, such as the number of principal components, or a model-specific

parameter, such as the number of trees in the ensemble, the benefits of a graphical interface

are quickly overcome by additional complexity. By contrast, a simple script that calls CLI

commands to perform machine learning operations can be directly modified to vary any of

the parameters. Additionally, the scripting method can incorporate tools from other toolkits,

or even custom-developed tools. Because nearly all programming languages can target CLI

applications, there are few barriers to adding custom operations. Graphical tools are unlikely

to offer such flexibility.

Figure 9.1: The model-space visualization generated by the command in step 7.
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Figure 9.2: A partial screen shot of the Waffles Wizard tool displayed in a web browser.

9.2 Wizard

One significant reason many people prefer to use tools unified within a graphical interface over

scriptable CLI tools is that it can be cumbersome to remember which options are available

with CLI tools, and to remember how to construct a syntactically-correct command. We

solve this problem by providing a “Wizard” tool that guides the user through a series of

forms to construct a command that will perform the desired task. A screen shot of this tool

(displayed in a web browser) is shown in Figure 9.2.

Rather than execute the selected operation directly, as most GUI tools do, the Waffles

Wizard tool merely displays the CLI command that will perform the operation. The user

may paste it directly into a command shell to perform the operation immediately, or the user

may choose to incorporate it into a script. This gives the user the benefits of a GUI, without

the undesirable tendency to lock the user into an interface that is inflexible for scripted

automation.
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9.3 Capabilities

In order to hilight the capabilities of Waffles, we compare its functionality with that found

in Weka [Hall et al., 2009], which at the time of this writing is the most popular machine

learning toolkit by a significant margin. Our intent is not to persuade the reader to choose

Waffles instead of Weka, but rather to show that many useful capabilities can be gained by

using Waffles in conjunction with Weka, and other toolkits that offer a CLI.

One notable strength of Waffles is in unsupervised algorithms, particularly dimension-

ality reduction techniques. Waffles tools implement principal component analysis (PCA),

isomap [Tenenbaum et al., 2000], locally linear embedding [Roweis and Saul, 2000], manifold

sculpting [Gashler et al., 2011], breadth-first unfolding, neuro-PCA, cycle-cut [Gashler and

Martinez, 2011a], unsupervised backpropagation and temporal nonlinear dimensionality

reduction [Gashler and Martinez, 2011b]. Of these, only PCA is found in Weka. Waffles

contains clustering techniques including k-means, k-medoids, agglomerative clustering, and

related transduction algorithms including agglomerative transduction, and max-flow/min-cut

transduction [Blum and Chawla, 2001].

Waffles provides some of the most-common supervised learning techniques, such as

decision trees, multi-layer neural networks, k-nearest neighbor, naive Bayes, and some less-

common algorithms, such as Mean-margin trees [Gashler et al., 2008a]. Waffles’ collection of

supervised algorithms is much smaller than that of Weka, which implements more than 50

classification algorithms. Waffles, however, provides an interface that offers several advantages

in many situations. For example, Weka requires the user to set up filters that convert data to

types that each algorithm can handle. Waffles automatically handles type conversion when

an algorithm receives a type that it is not implicitly designed to handle, while still permitting

advanced users to specify custom filters. The Waffles algorithms also implicitly handle

multi-dimensional labels. As some algorithm-specific examples, the Waffles implementation

of multi-layer perceptron provides the ability to use a diversity of activation functions, and

also supplies methods for training recurrent networks. The k-nearest neighbor algorithm
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automatically supports acceleration structures and sparse training data, so it is suitable for

use with problems that require high scalability, such as document classification.

As was demonstrated in the first example in this paper, Waffles features a particu-

larly convenient mechanism for creating bagging ensembles. It also provides a diversity of

collaborative filtering algorithms and optimization techniques that are not found in Weka.

Waffles also provides tools to perform linear-algebraic operations, and various data-mining

tools, including attribute selection and several methods for visualization.

9.4 Architecture

The Waffles tools are organized into several executable applications. These include:

1. waffles wizard, a graphical command-building assistant,

2. waffles learn, a collection of supervised learning techniques and algorithms,

3. waffles transform, a collection of unsupervised data transformations,

4. waffles plot, tools related to visualization,

5. waffles dimred, tools for dimensionality reduction and attribute selection,

6. waffles cluster, tools for clustering data,

7. waffles generate, tools for sampling distributions, manifolds, etc.,

8. waffles recommend, tools related to collaborative filtering, and

9. waffles sparse, tools for learning with sparse matrices.

Each tool contained in each of these applications is implemented as a thin wrapper

around functionality in a C++ class library, called GClasses. This library is included with

Waffles so that any of the functionality available in the Waffles CLI tools can also be linked

into C++ applications, or into applications developed in other languages that are capable

of linking with C++ libraries. The entire Waffles project is licensed under the GNU Lesser

General Public License (LGPL) version 2.1, and also later versions of the LGPL (http:

//www.gnu.org/licenses/lgpl.html). Also, some components are additionally granted
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more permissive licenses. Waffles uses a minimal set of dependency libraries, and is carefully

designed to support cross-platform compatibility. It builds on Linux (with g++), Windows

(with Visual C++ Express Edition), OSX (with g++), and most other common platforms. A

new version of Waffles has been released approximately every six months since it was first

released to the public in 2005. The latest version can be downloaded from http://waffles.

sourceforge.net. Full documentation for the CLI tools, including many examples, and also

documentation for developers seeking to link with the GClasses library can also be found

at that site. In order to augment the developer documentation, several demo applications

are also included with Waffles, showing how to build machine learning tools that link with

functionality in the GClasses library.
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Part IV

Conclusions

This part presents the concluding remarks of this dissertation. It begins by presenting

a brief summary of the major contributions made by this dissertation, with more technical

detail than is given in the introduction of this dissertation. It then identifies some of the

remaining challenges in NLDR, and also points out some of the possible research directions

that are likely to lead to significant future advances in this field.
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Chapter 10

Contributions, and Remaining Challenges

The primary contribution of Chapter 3 is the observation that NLDR can be cast

as a graduated optimization problem, which is demonstrated in the Manifold Sculpting

algorithm. Casting manifold learning as a graduated optimization problem is significant

because graduated optimization provides a mechanism to directly solve the optimization task

implicit within NLDR, rather than to seek a solution to an approximation problem, as other

NLDR algorithms do. It can be observed that graduated optimization is similar in many ways

to an optimization technique called simulated annealing. The differences, however, highlight

the importance of this contribution. Simulated annealing does not require the problem

to take a particular form, and therefore, is suitable for use with almost all optimization

problems. Unfortunately, the computational complexity of simulated annealing increases

exponentially with dimensionality, because it essentially uses a Monte Carlo approach to find

improvements. By contrast, graduated optimization operates efficiently in high-dimensional

spaces, but is only suitable for use with problems that take a particular form. Secondary

contributions of this chapter include a method for improving the performance of NLDR with

partial supervision.

Chapter 4 contributes a simple and efficient variant of oblique decision tree called

Mean Margins Decision Tree. It also makes the observation that adding this alternative

tree to decision tree ensembles adds significant homogeneity to the ensemble, to such an

extent that very small ensembles containing mean margins trees can outperform much larger

Random Forest ensembles.
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Chapter 5 contributes a method called CycleCut for pruning shortcut connections

from neighborhood graphs based on max-flow/min-cut. This method is superior to the

existing approach based on “edge betweenness centrality” because it does not rely on heuristic

stopping criteria, it does not remove superfluous edges, and it is additionally suitable for

preparing graphs with torroidal topologies for NLDR. Secondary contribution of this chapter

include the classification of graph conditions that create difficulty for NLDR techniques, and

an efficient method for finding a minimum set of edges to remove in order to ensure that all

instances of some structure are removed from a graph.

Chapter 6 contributes a method for neighbor selection called SAFFRON. In contrast

with existing approaches, it finds neighborhoods that are more suitable for use with NLDR in

more extreme cases. In particular, when combined with CycleCut, it can even produce neigh-

borhoods that are suitable for unfolding self-intersecting manifolds. Secondary contributions

of this chapter include a method for computing the dihedral angle between two flats with

codimensionality greater than 1, and a method for evaluating the alignment of two flats.

The primary contribution of Chapter 7 is a method called Temporal NLDR for

performing NLDR without making the assumption that distances in input observation

space are proportional to distances in intrinsic state space. This is significant because

this assumption is wrong in many important situations. The removal of this assumption

enables NLDR to be used to estimate the state of dynamical systems with accuracy from

image-based observations. A secondary contribution of this chapter includes a method for

training recurrent neural networks that is less susceptible to problems with local optima than

backpropagation-through-time.

Chapter 8 contributes an unsupervised method for training a multi-layer-perceptron

called Unsupervised Backpropagation that fits to the manifold represented by data samples.

This technique differs from existing approaches for training a multi-layer-perceptron in an

unsupervised manner in that it represents the manifold structure only once in the intrinsic

space, rather than separate the data into disjoint clusters. A secondary contribution is the
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demonstration that this method leads to more accurate imputation of missing values in data

than existing methods.

Chapter 9 presents an open source toolkit of machine learning algorithms called

Waffles. This toolkit offers several algorithms not found in other machine learning toolkits,

including all of the algorithms presented in this dissertation.

Although several significant advances were made in the production of this dissertation,

many important challenges remain in NLDR. We now attempt to highlight some of the

directions that we feel have potential to lead to useful contributions in this field.

One limitation of existing NLDR techniques is that they require enough data samples to

thoroughly represent the structure of the implicit underlying manifold. In contrast with these

algorithms, humans can often reduce high-dimensional sensory input to a simple understanding

of what is intrinsically represented based on only a small number of observations. The relative

effectiveness that humans exhibit is probably due in large part to their use of internal models

that have been trained through years of experience. In our estimation, the most significant

advances in NLDR will be found when they can operate in an incremental manner that

makes use of a generalizing internal model of the manifold structure. In order to be effective,

such algorithms will likely need to be pre-trained on a large collection of salient observation

data so that they can learn to internally represent the sparse codes and assembly hierarchies

relevant to the domain, but will then be able to operate effectively with fewer observations.

Another limitation of many NLDR techniques is their reliance on local neighborhood

graphs to represent the intrinsic manifold structure. This dissertation presents several

techniques to mitigate the difficulties associated with neighborhood graphs, but other problems

remain, including the unacceptable computational complexity of finding them in the first

place. In contrast with these NLDR approaches, Chapter 8 presented a manifold learning

algorithm called Unsupervised Backpropagation (UBP) that performs NLDR without any

requirement to find neighbors. Additionally, UBP offers certain other desirable properties,

including the ability to operate using sparse observations, and an internal model that facilitates
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generalization. We conjecture that neural-based approaches for modeling manifold structure

will overtake the neighborhood-based approaches. Additionally, as new hardware is becoming

increasingly available that facilitates the parallel implementation of neural networks, it is

likely that such approaches will soon become much more efficient than neighborhood-based

approaches that may not benefit as much from such hardware. We also conjecture that the

additional capabilities of neural-based approaches to manifold learning will make them a

better choice for general problem solving.

As manifold learning algorithms are used to analyze increasingly complex problems, it

will likely become apparent that many problems are not represented well as structured sets of

vectors. Such problems will probably require solutions that involve segmenting manifolds into

hierarchies, or at least separate parts, and learning such parts independently. An important

remaining advance in manifold learning, therefore, will involve techniques for identifying

how overlapping parts of separate representations fit together to form a complete whole.

This challenge may be exacerbated by the condition that separate parts may not even be

represented with the same number of intrinsic variables. Such advances will likely also lead

to ensemble techniques in manifold learning that will increase accuracy.

Although much work remains in this field, manifold learning techniques are already

beginning to demonstrate capabilities that were previously thought to be exclusive to human

brains. As research advances in this field, we are optimistic that our understanding of human

intelligence will increase, and that manifold learning will one day be a significant component

in machines that exhibit a breadth of capability with a diversity of problems that are currently

considered too challenging for machines.
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S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. Bona, A. Binder,

C. Gehl, and V. Franc. The SHOGUN machine learning toolbox. The Journal of Machine

Learning Research, 11:1799–1802, 2010. http://mloss.org/software/view/2/.

E. Sontag. Neural networks for control. Essays on Control: Perspectives in the Theory and

its Applications, 14:339–380, 1993.

J. P. Spinrad. Finding large holes. Information Processing Letters, 39(4):227 – 229, 1991.

ISSN 0020-0190. doi: DOI:10.1016/0020-0190(91)90184-J.

S. M. Stigler. Francis Galton’s account of the invention of correlation. Statistical Science, 4

(2):73–79, 1989. ISSN 0883-4237.
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