
A Method for Finding Similarity between
Multi-Layer Perceptrons by Forward Bipartite

Alignment

Stephen Ashmore and Michael Gashler
Department of Computer Science and Computer Engineering

University of Arkansas
Fayetteville, Arkansas

Email: {scashmor, mgashler}@uark.edu

Abstract—We present Forward Bipartite Alignment (FBA),
a method that aligns the topological structures of two neural
networks. Neural networks are considered to be a black box,
because neural networks have a complex model surface deter-
mined by their weights that combine attributes non-linearly. Two
networks that make similar predictions on training data may still
generalize differently. FBA enables a diversity of applications,
including visualization and canonicalization of neural networks,
ensembles, and cross-over between unrelated neural networks
in evolutionary optimization. We describe the FBA algorithm,
and describe implementations for three applications: genetic
algorithms, visualization, and ensembles. We demonstrate FBA’s
usefulness by comparing a bag of neural networks to a bag of
FBA-aligned neural networks. We also show that aligning, and
then combining two neural networks has no appreciable loss in
accuracy which means that Forward Bipartite Alignment aligns
neural networks in a meaningful way.

I. INTRODUCTION

Artificial neural networks are powerful tools. Theoretically,
they can approximate arbitrary functions [13] [8] and prac-
tically, they have been shown to outperform other methods
at many real world problems [15]. Because neural networks
combine attributes in nonlinear combinations, it is difficult
to understand exactly how they work internally. By contrast,
decision trees produce models that are relatively easy to
understand. Decision trees may make their decisions based
on entropy [20] [21] or random choices [12] [4], or other
methods. But all of these metrics base the decision on the
value of a single attribute, and are therefore generally easy
to examine and understand; as well as compare against other
decision trees. Unlike decision trees, neural networks do not
work with simple rules, but rather with a complex model
surface determined by their weights that combine attributes
non-linearly. These surfaces may be in in high-dimensional
spaces, and the weights may take on any continuous values.
Although neural networks are quite powerful, they are seen as
a black box [24].

As a black box, it is also difficult compare different neural
networks. A naı̈ve comparison might evaluate their accuracy
with a particular dataset, but this is no guarantee of similarity
between the two networks. Even though two neural network
may make similar predictions with the training data, they may
still generalize differently. Even though their accuracies may
be similar, the models may be very different. While methods

for training artificial neural networks are well established and
varied [11] [2], comparing neural networks is not something
that can yet be easily done.

We present a method that aligns the topological structures
of two neural networks called Forward Bipartite Alignment
(FBA). FBA enables a diversity of applications, including
evaluating the similarity of two neural networks, reducing
large ensembles of neural networks down to a single model,
transforming neural networks into a canonical form, facilitating
cross-over between unrelated neural networks in evolutionary
optimization, and producing meaningful vizualizations of sets
of neural networks.

Because the weights in neural networks are typically
initialized randomly, each trained network may arrive at an
entirely different model. The subset of weights that represent
some concept in one neural network may be used by another
neural network to represent a completely different part of the
problem. However, when two neural networks are aligned by
the proposed method, weights with similar functional meaning
are moved to the same locations.

Given two multi-layer neural networks with the same
number of nodes in each layer, FBA adjusts the weights using
transformations that have no impact on the overall network
output. It can negate weights as long as affected downstream
weights are also negated, and it can swap hidden units as long
as correspondingly affected weights are also swapped. These
transformations are applied to one of the neural networks such
that its organization of weights aligns with those in other
network. FBA uses bipartite matching to find the operations
that optimally align the two neural networks.

A method named Hogwild has been shown to be effec-
tive for parallelizing multilayer perceptrons [22]. It average
the weights of multiple neural networks together at frequent
intervals. This works because the frequent averaging forces
every neural network to utilize the same weights for the same
purpose, so there is no need to worry about which weights
correspond with each other. Unfortunately, Hogwild is not
useful in cases where communication is limited. For example,
it could not be used to distribution computation across a cluster
of separate machines without a very high-speed link between
them. It certainly would not suffice for allowing arbitrary ma-
chines connected to the Internet to participate in a distributed
training effort. However, FBA enables neural networks that

have learned in unrelated directions to be averaged together
with little-to-no loss. In some cases, averaging two neural
networks together even leads to improved accuracy.

Genetic algorithms have been used with multi-layer per-
ceptrons in the past. Some work has focused on optimizing
the training of a neural network, such as G-Prop [6]. Other
work has been to optimize and find ideal topologies of neural
networks such as Schiffmann’s work [23]. Genetic algorithms
can be used to optimize the weights, topology or parameters of
a neural network, for example Montana and Davis’ work with
genetic algorithms replaced backpropagation and attempted
to find globally optimal weights for a neural network [19].
In some cases, these genetic algorithms use multiple neural
networks created over time as part of an evolution of networks.
These networks are improved over generations to create a
network capable of solving the desired problem. Forward
Bipartite Alignment can be used to align these networks before
crossover, or at anytime as part of a genetic algorithm.

Stanley used historical markings to track which weights
correspond with each other in evolving generations of neural
networks [25]. He showed that this resulted in better crossover
of weights. Because of the historical nature of the weights,
crossover could be done with weights that represent similar
structures or functions. For example, those weights should
be performing the same functionality for each neural net-
work, even though the exact weights may differ. However,
his approach does not detect when two separate evolutionary
lines have serendipitously converged to compatible regions;
because his method only tracks historical markings, it cannot
anticipate two different evolutionary lines becoming similar.
Merging two such genomes could have significant potential
for making discoveries in previously unexplored regions of
the gene space. FBA could be used to detect when these lines
of neural networks are similar, and merge them even when
learning has been distributed across different parts of the neural
networks. Our approach can also be used with other genetic
algorithms, after the weights have been trained. Crossover of
weights may not be entirely meaningful if the weights are
not aligned. If the networks were aligned before crossover
occurred, more meaningful changes to the networks could be
made, such as selectively choosing certain weights.

Because there are multiple ways to represent any problem
with an MLP, no mechanism currently exists for measuring
the distance between two MLPs. Such a distance metric could
be useful for detecting when two MLPs have fallen into
the same local optimum, or it could enable analysis with
multidimensional scaling to visualize the relationships between
different MLPs. Other work to visualize MLPs has focused on
the training process and using principal component analysis to
gain some insight [9]. Our alignment approach can be used to
compute a distance between MLPs, opening up another avenue
of visualization. Using this alignment method, neural networks
can now be compared in more meaningful ways, showing how
their internal models are different.

Forward Bipartite Alignment can be used for other appli-
cations, because it is only a technique to align two networks,
and find similarity. While it can be used to visualize networks,
or canonicalize them; our method can also be leveraged as
a component in an ensemble. Ensembles enable a learning
model to achieve greater predictive accuracy with the cost of

additional computation, which must be paid at both training-
time and prediction time [5]. However, if the power of the
ensemble can be encapsulated into a single model by averaging
the weights together, then no additional cost must be paid at
prediction-time. This principle was demonstrated by Anderson
and Martinez in [1]. Even though their work was published
over 15 years ago, no effective method has yet been found for
averaging the weights of multilayer perceptrons. FBA can be
used to align two neural networks, then averaging the weights
becomes meaningful.

Section 2 introduces the detailed algorithm of aligning two
networks. Section 3 covers the other applications of aligned
neural networks including visualization, ensemble, genetic
algorithms, and [any others]. Section 4 explores the validation
and evaluation results of the algorithm. Finally, section 5
concludes the paper.

II. ALGORITHM

When two models are represented in a canonical form,
the elements of that model may be compared in a pair-wise
manner to evaluate the similarity (or dissimilarity) between
the two models. Unfortunately, multilayer perceptrons lack
a canonical form, so even two multilayer perceptrons that
represent precisely the same function for all possible inputs
may yet have significantly different internal weights. In order
to address this problem, we define two transformations that
may be applied to a multilayer perceptron without affecting
the functions they represent:

First, assuming the activation functions are antisymmetric,
the output of any hidden unit may be negated if the weights
into which it feeds are also negated. If the hidden unit has
an activation function, a, which is antisymmetric about the
input 0, then the output of this unit may be negated by adding∑

i 2a(0)wi to its bias, and negating all of the other incoming
weights. In cases where a(0) = 0, such as tanh, the biases will
not be changed.

Second, any two hidden units, ua, and ub may be swapped
if the corresponding weights and activation functions are also
swapped. That is, all of the weights that previously fed into
ua should now feed into ub, all of the weights that previously
fed from ua should now feed from ub, and the corresponding
activation functions must also be exchanged.

The target network remains constant, and the align network
is changed. Neuron D is updated using the first transformation,
negation. Neurons F and E are swapped using the second
transformation. Certain function-invariant transformations also
exist in degenerate cases. For example, when any two hidden
units represent functions that differ only by a scalar factor,
then it is possible to continuously adjust the weights that feed
from these two units without affecting the function represented
by the overall network. However, such cases are extremely
rare since they require exact weight conditions, and network
weights are typically initialized with small random values.
Therefore, we can safely ignore such degenerate cases in
the vast majority of real-world situations, and assume that
managing only the first and second cases is sufficient to align
two feed-forward neural networks. In Figure 1, we show two
neural networks that are to be aligned.

A

B

C

1.1

1.8

0.0

0.7

0.3

0.2

D

E

F

-1.0

-1.9

0.3

0.3

0.1

0.7

Target Network

Align Network (before)

1.0

1.9

0.1

0.7

0.3

0.3

Align Network (after)

-D

F

E

-1

-0
.5 0

0
.5 1

-2

-1

0

1

2

A

B

C

-D

D

F
E

-E

-F

Fig. 1. This figure shows how FBA analyzes weights. The align network will be aligned to the target network. Neurons A and D are similar, however neuron
D should be negated. Neuron E is similar to neuron C, because of how close the weights are; likewise neuron F is similar to neuron B. FBA finds the optimal
matching that minimizes the difference between the weights, but does not require matching weights to be identical. A plot of the weights feeding into hidden
units is given, there it can be see that the similar neurons are grouped together. The final aligned network is shown in the bottom right.

A naı̈ve approach for aligning neural networks might be
to select an arbitrary canonical form, and convert both neural
networks into this form. For example, one might swap network
units such that they occur in each layer in sorted order
according to the magnitude of the multi-dimensional vector
of weights that feed into each unit, and one might invert the
weights of any hidden layer in which the incoming weight
with the largest magnitude is negative. The problem with
such canonical forms is that they create arbitrary asymmetries
in the space of possible neural networks. In other words,
very small changes in weights could result in a dramatically
different canonical representation, depending on how close the
networks happened to fall to the conditions that were selected
to represent the canonical form.

An unbiased approach for aligning neural networks re-
quires finding the optimal bipartite matches between the nodes
in the corresponding layers of a multilayer perceptron. Fortu-
nately, bipartite matching can reduce to a graph cutting prob-
lem with efficient known solutions [28]. If swapping network
units were the only function-invariant operation with neural
networks, then bipartite matching algorithms would provide a
straight-forward solution to identifying the best way to swap
the nodes. Unfortunately, negation is also a function-invariant
operation. FBA addresses this complication by including both

positive and negated representations of the weights of the units
in one of the neural networks, such that n units are matched
against 2n units in the other network. When one of the negated
points is found to be optimal for the bipartite matching, this
indicates that the weights of that unit need to be negated. In
figure 1 the weight-vectors are plotted in a graph, including
the negation of each weight. The similar neurons are closer
together, and these would be the matching weight vectors that
bipartite matching would choose. The final aligned network
can be seen in the bottom right of the figure.

Figure 2 gives pseudocode for the FBA algorithm. Let X
be the “target” neural network, and Y be the network that we
wish to align with X . X and Y must have the same number
of units in each of their corresponding layers. For each layer
in X , called l, let S be the set of n weight-vectors that feed
into each unit in the lth layer. For each corresponding layer
in Y , let R be the set of n weight-vectors that feed into each
unit, plus the n negated weights. To find similarity between
these layers we use bipartite matching. This finds a pairing
between the point-vectors in R and the n closest points in S.
If the matched pairings includes one of the negated vectors,
as in the weight vector from R is the negation of the weight
vector from S, then we negate the output of that unit in R.
Next, we swap the units in R such that they align with the

Fig. 2. Foward Bipartite Alignment Psuedocode

let X be the target neural network
let Y be the network to be aligned
let L be the number of layers.
for all l ∈ L do

n:=number of units in l
S:=set of weight-vectors that feed into l, for network
X
R:=set of weight-vectors that feed into l, for network
Y , plus the n negations of each weight in R
K:=maximum bipartite matching between S and R
for all i ∈ K do

if i is a matching negated weight in K then
negate the output of that unit in Y

end if
end for
for all i ∈ n do

swap i in Y such that i now matches the node in
X that it matched in K

end for
layer l is now aligned.

end for

matching units in S. This process is repeated for each layer in
the network until all hidden layers have been aligned. It is not
necessary to align the output layer because both unit location
and sign are constrained by the output labels that are used to
train the neural network.

III. APPLICATIONS

A. Averaging Weights Ensemble

Forward Bipartite Alignment can also be leveraged as a
component in an ensemble learning process. Given a set of
neural networks, these networks can be trained separately on
the same problem set. Each neural network would be initialized
differently, and perhaps trained on a different subset of the
problem [5]. These different neural networks would produce
a model different from the others because of their differing
training and initialization.

For an ensemble set of neural networks, prediction time can
be very slow due to the need to propagate input through each
network to receive a prediction. As shown in Anderson and
Martinez’s work on combining Single-Layer Perceptrons, an
ensemble of perceptrons can be much faster at prediction time
if there is only one model. They averaged weights between
SLPs and generated a new combined model that performed
as well or better than the ensemble of SLPs at prediction
time. Similarly, our approach of alignment can be used to
combine multi-layer perceptrons to produce a single model for
prediction. See Figure 3 for a demonstration of the difference
between bagging and wagging.

We detail a simple implementation of an ensemble using
Forward Bipartite Alignment. This technique will work with
a large number of networks, or a small number. Each neural
network should be initialized randomly, and trained on the
problem set. Bootstrapping can be used to further separate the

Training Time

Prediction Time

Bagging FBA-Wagging

Bagging FBA-Wagging

Each Network
Trains
Separately

Each Network
Trains Separately
Then are combined
into one
single model.

Each network
is evaluated
for prediction,
then predictions
are combined.

Single combined
network
is evaluated.

Fig. 3. This figures shows the difference between bagging and FBA-wagging.
Bagging pays the ensemble cost of evaluating all neural networks at both
training and prediction time. FBA-wagging speeds up prediction time by
allowing the ensemble to be encapsulated in a single model. This single model
then performs as well as the bag of networks.

networks’ models such that they are presented with a different
subset of the total pattern set. Training of these models should
proceed normally with stochastic gradient descent, or some
other training method. Once training has completed, the neural
networks can be aligned, and combined into a single model.
Align each network using the above shown algorithm to a
“target” network. We suggest using the network with the
highest accuracy as the “target,” but any of the networks can be
used. Once alignment has been completed, comparing weights
is now meaningful. A method to combine the networks could
be to simply average their weights together. This averaging
only works because the networks were first aligned. Other
methods could be used, such as weighted averaging based on
a confidence level in each network.

For this ensemble technique to be useful, no accuracy
loss should occur. We implement the simple version of this
algorithm, with only simple averaging of weights. We do
believe that other averaging techniques can perform better than
simple averaging, but we choose this method to show that the
most simple combining method still suffers no loss. See the
following section for results on the accuracy after combining
the networks.

B. Visualization

Visualizing a neural network can be very difficult. Being
black boxes, it is difficult to know if a comparison between
two neural networks is correct. As two neural networks could
achieve similar accuracy; their internal models, or how they
reach that accuracy; could be very different. If we grouped net-
works based on accuracy, it does not reveal much information
about the models themselves. Forward Bipartite Alignment
can offer significant insight into the black box. Aligning two
neural networks ensures that they are now similar, previously
comparing un-aligned networks would be similar to comparing
an apple to an orange. If accuracy of a fruit is determined by
size, the apple and orange would be very similar. However,
they are not the same thing. Un-aligned networks are similar
to the fruit, they may be similar in one dimension, but very
dissimilar in another.

To visualize networks then requires the networks to be
comparable. Once two networks have been aligned, they are
then comparable. We introduce a simple metric to quantify the
difference in two networks. Once two networks are aligned,
their weights can be compared in a meaningful way. Taking
the sum-squared weights of both networks and calculating the
difference now yields a meaningful value that represents how
similar or dissimilar the two networks are. This metric can
then be used as the distance between two neural networks.

This distance metric can be used in many different ways.
One method could be to use multi-dimensional scaling to
visualize the relationships between neural networks. Another
could be to use simple clustering algorithms to cluster neural
networks together. Given a set of neural networks with the
same topology, each trained on a different dataset; FBA could
allow for the comparison of datasets from within the network
model space. Clustering these networks could show that some
problems are solved in similar ways, or some similar problems
are solved by neural networks in very different ways.

Multidimensional scaling (MDS) is a class of well-
established dimensionality reduction methods that are useful
for visualizing a set of things that have complex high di-
mensional representations [16][17] . MDS accepts as input a
matrix of the pair-wise distances between every pair of high
dimensional representations, and produces a low dimensional
representation that exhibits approximately the same pair-wise
distances. When the data is projected into 2 or 3 dimensions,
humans can visualize the data that would otherwise be inacces-
sible due to its high dimensionality. A closely related method
called Isomap [26] improves on MDS by only requiring the
pair-wise distances to be measured in local neighborhoods,
and estimating the other distances with the Floyd-Warshall
algorithm. Isomap has demonstrated an ability to extract very
high-level concepts from image-based data.

Previously, these methods could not be used for visualizing
a set of neural networks, because no meaningful metric for
evaluating the distances between neural networks was known.
FBA solves this problem by enabling meaningful distance
metrics that operate on a pair of neural networks. The ability
to visualize sets of neural networks is significant because it
makes ensembles of neural networks accessible to the powerful
human intuition. For example, a visualization might enable
humans to quickly determine which trained models in an

ensemble of neural networks are outliers, or how many clusters
of local optima are found with a particular problem. It also
has potential applications in transfer-learning. Such problems
typically involve training a neural network on a problem where
abundant data is available, then retraining it on a problem with
limited training data [29], [3], [7], [10], [18], [14]. The ability
to visualize sets of neural networks would enable humans to
cluster and categorize large sets of problems, and identify those
that are the best candidates for transfer-learning.

C. Genetic Algorithms

Genetic algorithms use simulated evolution with a popu-
lation of “genomes” to seek a genome that is well-fit for a
particular purpose. In the case where a genetic algorithm is
used to train a neural network, each genome in the population
represents a set of candidate weights for the neural network.
One of the most common operations used in genetic algorithms
is cross-over, which selects two parent genomes, and generates
a new child genome by drawing some elements from one of
the parent genomes, and some elements from the other parent
genome. Another operation that is commonly used when the
genome consists of continuous values, as is the case with
the weights in a neural network, is interpolation. Like cross-
over, interpolation generates a new child genome by combin-
ing elements from two (or more) selected parent genomes.
Unfortunately, both of these operations are meaningless if the
neural networks are unaligned. Stanley mitigated this problem
by using special markers to track the ancestral lineage of each
weight [25]. However, this approach severely limits which
parents may be combined to generate offspring to those that
are closely related. Since the combination of close relatives
in biological populations is known to be problematic, it is
reasonable to suppose that combining genomes that are not
closely related may be important for effective evolution.

Forward Bipartite Alignment is well-suited for aligning
the selected parent neural networks, such that their weights
can be combined in a meaningful manner to generate a child
network. In both crossover and interpolation, FBA is first
applied to align one of the selected parent networks with the
other one, then the operation is performed on the genomes
that represent the aligned networks. (It does not matter which
parent network is selected to be aligned with the other one,
because the resulting child network may also be aligned with
other networks in future generations.)

For crossover, some of the weights for the child network
are then drawn from the first parent, and the rest are drawn
from the other parent. Some implementations may draw all the
weights for a particular layer from the same parent, whereas
other implementations may randomly choose a different parent
for each weight. The advantages and disadvantages of these
implementation details are outside the scope of this paper, but
it is relevant to note that FBA enables the networks to be
aligned, which is necessary for meaningful crossover between
neural networks that are not closely related.

For interpolation (or extrapolation), each weight in the
child network, c is computed as a linear combination of the
corresponding weights in the two parent networks a and b,
such that wc

i = γwa
i + (1 − γ)wb

i , where γ is a scalar factor
for interpolation, and i iterates over all the weights in the child

network. When γ is a value between 0 and 1, the child weight
is an interpolation of the parent weights. When γ is less than
0 or greater than 1, the child weight is an extrapolation that
further extends the difference between the two parent networks.
Both cases are meaningful in a genetic algorithm, so both
interpolation and extrapolation are likely to be used in the same
genetic algorithm. Whether a constant value for γ is used at
each weight, or whether a random value for γ is used for each
weight is an implementation-specific detail.

IV. RESULTS OR EVALUATION OR VALIDATION

A. Asymptotic Complexity

We test the efficiency of our alignment method by compar-
ing the size of the network and alignment time. The cost of
aligning a network should be small compared to the training
of a network. To be an effective tool, the alignment algorithm
should take a relatively small time. We compare a set of
neural network sizes against the asymptotic complexity of
the alignment process. The asymptotic complexity of FBA
is essentially overwhelmed by the complexity of the bipartite
matching. The asymptotic complexity of FBA as a whole is
equal to n ∗ (ml2 + lk). Where, n is equal to the number of
layers, m is the nodes in the previous layer, l is the number of
nodes in the current layer, and k is the number of nodes in the
next layer. For each layer, bipartite matching is performed, then
swapping and negating nodes is a very small in comparison.
In practice, we have found that the align method is very fast,
and does not seem to slow an ensemble of many 3 layer neural
networks.

B. Ensemble

We also examined the effect alignment has on an ensemble
of neural networks. Our goal is to show that our alignment
method has no appreciable effect on the accuracy of a neural
network, even when it has been aligned and then combined
with another network. This test would validate our alignment
method has little loss when combining networks. We use
simple averaging to combine the weights during this step,
other methods could be used here instead. We chose simple
averaging to show that even when combining weights in the
simplest manner we still do not see loss. We also test our
ensemble method against bagging, to show that in cases where
bagging performs well, FBA aligned weight averaging (FBA-
wagging) can speed up prediction time.

We compare against two methods of training a neural
network, stochastic gradient descent by backpropagation, and
a bagging ensemble of neural networks. For some problems
and datasets, bagging improves accuracy over other methods.
Similarly, we would expect a FBA-aligned bag of networks to
perform as well as the simple bag ensemble. In cases where
bagging improves accuracy, FBA could improve training time
and will improve prediction time. Because FBA-wagging has
only one model that is used in prediction, the prediction step is
a simple evaluation of the neural network. Comparing against
a single multi-layer perceptron shows that FBA and simple
averaging does not cause a loss in accuracy.

We train a bag of neural network with 12 individual
models; each with two hidden layers with sizes of 60 and
40 nodes respectively. We also train a separate set of neural

Dataset Neural Network Bagging FBA-Wagging
Breast-Cancer 0.3776 0.3440 0.3265
Bupa 0.4689 0.4231 0.4220
Dermatology 0.7147 0.6759 0.6459
Diabetes 0.373 0.349 0.348
Ionosphere 0.171 0.194 0.165
Iris 0.048 0.046 0.037
Lenses 0.325 0.383 0.283

Fig. 4. This table shows a subset of the UCI datasets with the error rate
of neural network, bagging, and FBA-Wagging, where bagging improved
accuracy over a neural network. Each column is the Neural Network, Bagging,
or FBA-Wagging error rate, respectively. A lower number is better. This table
shows the correlation between bagging and FBA-Wagging, when bagging does
better FBA-Wagging should allow the bag to be combined into a single model
to improve prediction time.

Dataset Neural Net FBA-Wagging Difference
Adult-Census 1653.97 1643.53 10.44
Anneal 1.63937 1.94778 −0.30841
Audiology 7.34623 6.72402 0.62221
Autos 75.9002 75.9811 −0.0809
Badges2 0.0057312 0.00586879 −0.00013759
Balance-Scale 50.295 47.3272 2.9678
Balloons 0.0107167 0.0138307 −0.003114
Breast-Cancer 25.4237 25.8919 −0.4682
Breast-W 4.56037 4.6047 −0.04433
Bupa 34.1569 33.3015 0.8554
Cars 386.546 385.52 1.026
Chess 4383.35 1444 2939.35
Colic 22.7566 22.4344 0.3222
Colon 3.90537 4.25473 −0.34936
Credit-a 24.9422 24.8268 0.1154
Credit-g 89.0866 90.092 −1.0054
Dermatology 15.0379 18.8277 −3.7898
Diabetes 53.593 54.065 −0.472
Glass 58.622 58.2534 0.3686
Heart-c 38.157 36.4324 1.7246
Heart-h 212.002 212.003 −0.001
Heart-statlog 15.4266 15.5202 −0.0936

Fig. 5. This table compares the Root Mean Squared Error (RMSE) of a
single neural network, and a combined network which was combined using
FBA-Wagging. The single neural network was first evaluated, then combined
with 3 other neural networks using FBA-Wagging. The FBA-Wagging column
shows the RMSE of this combined model. FBA-Wagging should not have any
appreciable effect on accuracy. This table shows that even though 4 neural
networks were combined with simple averaging after alignment, the accuracy
does not deteriorate due to the aligning and combination process. In some
cases, it improves the model.

networks with the same topology and number of models that
will be aligned and averaged, known as FBA weight averaging
(FBA-wagging). FBA-wagging is trained in the same way as
the bagging ensemble, except at the end of training the neural
networks are aligned and then their weights averaged. Finally,
we train a single multi-layer perceptron with an identical
topology (60 nodes in the first hidden layer, then 40 nodes in
the second hidden layer) to the other networks. We repeated
this training for a subset of the UCI dataset.

For datasets where bagging does not increase accuracy,
FBA-wagging is not expected to have an impact on accuracy.
We remove any datasets where bagging does not improve accu-
racy, except for those datasets where FBA-wagging improved

over the neural network where bagging did not. For datasets
where bagging does improve accuracy, we show error rates
with bagging, FBA-wagging, and a single neural network. See
Figure IV-B for the error rates. A lower score is better, as
it means the model missed fewer testing samples. We expect
to see the accuracy of FBA-wagging to be correlated with
bagging, when it does better so should FBA-wagging. FBA-
wagging would be used to combine the bagging models to
improve prediction time, and in some cases it can improve
generalization accuracy. Figure IV-B shows that there is a
correlation between bagging and FBA-Wagging.

To show that we have little loss when averaging networks
together, we trained a set of neural networks on a subset of
the UCI datasets. The network with the highest accuracy is
shown for each dataset. We then combined the networks, using
FBA-wagging, and display the combined model’s accuracy.
In the case that FBA aligns networks in a meaningful way,
we would expect to see similar error rates on the majority of
datasets. In Fig IV-B, we show the RMSE for a neural net and
FBA-wagging, as well as the difference. The difference should
be small, or positive as positive means that FBA-wagging
beats the single neural network. Figure IV-B shows that when
combining a multi-layer perceptron with another using FBA
results in little loss to accuracy.

V. CONCLUSION

We have presented Foward Bipartite Alignment (FBA), a
method to align two arbitrary artificial neural networks of any
size. FBA has many uses in the field of neural networks,
including ensembles, visualization, and genetic algorithms.
We described specific implementation details on those three
categories to show that FBA has real use. We anticipate
other uses for aligning two networks. To validate our method,
we described two experiments one designed to show the
correlation between FBA-Wagging and bagging; and another
to show that FBA aligns neural networks in a meaningful way.

REFERENCES

[1] Andersen, Tim, and Tony Martinez. “Wagging: A learning approach
which allows single layer perceptrons to outperform more complex learn-
ing algorithms.” Proceedings of the IEEE International Joint Conference
on Neural Networks IJCNN’99. 1999.

[2] Bengio, Y. “Learning Deep Architectures for AI”, Foundations and
Trends in Machine Learning. 2009.

[3] Bengio, Y. “Deep Learning of Representations for Unsupervised and
Transfer Learning”. ICML Unsupervised and Transfer Learning, 2012,
pg 17-36.

[4] Breiman, Leo. “Random Forests”. Machine Learning Vol. 45, pg 5-32.
[5] Breiman, L. “Bagging predictors”. Machine Learning. 1996, 26(2), 123-

140.
[6] Castillo, P. A., J. J. Merelo, Alberto Prieto, V. Rivas, and Gustavo

Romero. “G-Prop: Global optimization of multilayer perceptrons using
GAs.” Neurocomputing 35, no. 1 (2000): 149-163.

[7] Ciresan, Dan Claudiu and Meier, Ueli and Schmidhuber, Jürgen. “Trans-
fer learning for Latin and Chinese characters with deep neural networks”.
Neural Networks (IJCNN), The 2012 International Joint Conference on.
2012, IEEE, pg 1-6.

[8] Cybenko, George. “Approximations by superpositions of sigmoidal func-
tions”. Mathematics of Control, Signals, and Systems. 1989, 2 (4), 303-
314.

[9] Gallagher, Marcus, and Downs, Thomas. “Visualization of Learning in
Multilayer Perceptron Networks Using Principal Component Analysis”.
Systems, Man, and Cybernetics Part B, IEEE Transactions on. 2003 Vol
33 (1), 28-34.

[10] Graves, Alex and Mohamed, Abdel-rahman and Hinton, Geoffrey.
“Speech recognition with deep recurrent neural networks”. Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Con-
ference on. 2013, pg 6645-6649.

[11] Hinton, Geoffrey, et al. “A fast learning algorithm for deep belief nets.”
Neural Computation 18 no. 7. 2006, 1527-1554.

[12] Ho, Tin. “The Random Subspace Method for Constructing Decision
Forests”. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence. 1998 Vol. 20, pg 832-844.

[13] Hornik, Kurt. “Approximation Capabilities of Multilayer Feedforward
Networks”. Neural Networks. 1991, 4(2), 251-257.

[14] Huang, Jui-Ting and Li, Jinyu and Yu, Dong and Deng, Li and
Gong, Yifan. “Cross-language knowledge transfer using multilingual
deep neural network with shared hidden layers”. Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on.
2013, pg 7304-7308.

[15] Krizhevsky, Alex. Sutskever, Ilya. and Hinton, Geoffrey. “ImageNet
Classification with Deep Convolutional Neural Networks” Neural Infor-
mation and Processing Systems, Proceedings of, 2012.

[16] Kruskal, Joseph B. “Multidimensional scaling by optimizing goodness
of fit to a nonmetric hypothesis.” Psychometrika 29.1 (1964): 1-27.

[17] Joseph B. Kruskal, and Myron Wish. Multidimensional scaling. Vol.
11. Sage, 1978.

[18] Mesnil, Grégoire et. a. “Unsupervised and Transfer Learning Challenge:
a Deep Learning Approach”. ICML Unsupervised and Transfer Learning,
2012, pg 97-110.

[19] Montana, David J., and Lawrence Davis. “Training Feedforward Neural
Networks Using Genetic Algorithms.” In IJCAI, vol. 89, pp. 762-767.
1989.

[20] Quinlan, J. R. 1986. “Induction of Decision Trees”. Mach. Learn. 1, 1
(Mar. 1986), 81-106

[21] Quinlan, J. R. “C4.5: Programs for Machine Learning”. Morgan Kauf-
mann Publishers, 1993.

[22] Recht, Benjamin, et al. “Hogwild: A lock-free approach to parallelizing
stochastic gradient descent.” Advances in Neural Information Processing
Systems. 2011

[23] Shiffmann, W. Joost, M. and Werner, R. “Application of Genetic Al-
gorithms to the Construction of Topologies for Multilayer Perceptrons”.
Artificial Neural Nets and Genetic Algorithms, 1993. pg. 675-682

[24] Sjoberg, Jonas, et al. “Nonlinear Black-Box Modeling in System
Identification: a Unified Overview.” Automatica, 1995. Vol. 31, pg 1691–
1724.

[25] Stanley, Kenneth O., and Risto Miikkulainen. “Efficient evolution of
neural network topologies.” Evolutionary Computation, 2002. CEC’02.
Proceedings of the 2002 Congress on. Vol. 2. IEEE, 2002.

[26] Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. “A global
geometric framework for nonlinear dimensionality reduction.” Science
290.5500 (2000): 2319-2323.

[27] Werbos, Paul J. “The Roots of Backpropagation. From Ordered Deriva-
tives to Neural Networks and Political Forecasting”. New York, NY: John
Wiley & Sons, Inc.

[28] West, Douglas Brent. “Introduction to graph theory”. Vol. 2. Upper
Saddle River: Prentice hall, 2001.

[29] Weston, Jason and Ratle, Frédéric and Mobahi, Hossein and Collobert,
Ronan. “Deep learning via semi-supervised embedding”. Neural Net-
works: Tricks of the Trade, 2012, Springer, pg 639-655.

