
A Hybrid Latent Variable Neural Network Model
for Item Recommendation

Michael R. Smith
Computer Science Department

Brigham Young University
Provo, Utah 84601, USA

Email: msmith@axon.cs.byu.edu

Michael S. Gashler
Department of Computer Science

and Computer Engineering
University of Arkansas

Fayetteville, AR 72701, USA
Email: mgashler@uark.edu

Tony Martinez
Computer Science Department

Brigham Young University
Provo, Utah 84601, USA

Email: martinez@cs.byu.edu

Abstract—Collaborative filtering is used to recommend items
to a user without requiring a knowledge of the item itself and
tends to outperform other techniques. However, pure collab-
orative filtering technique suffer from the cold-start problem,
which occurs when an item has not yet been rated or a user
has not rated any items. Incorporating additional information,
such as item or user descriptions, into collaborative filtering
can address the cold-start problem. In this paper, we present
a neural network model with latent input variables (latent neural
network or LNN) as a hybrid collaborative filtering technique
that addresses the cold-start problem. LNN outperforms a broad
selection of content-based filters (which make recommendations
based on item descriptions) and other hybrid approaches while
maintaining the accuracy of state-of-the-art collaborative filtering
techniques.

I. INTRODUCTION

Modern technology enables users to access an abundance
of information. This deluge of data makes it difficult to sift
through it all to find what is desired. This problem is of
particular concern to companies who are trying sell products
(e.g. Amazon or Walmart) or recommend movies (e.g. Netflix).
To lessen the severity of information overload, recommender
systems help a user find what he or she is looking for. Two
commonly used classes of recommender systems are content-
based filters and collaborative filters.

Content-based filters (CBF) make recommendations based
on item/user descriptions and users’ ratings of the items.
Creating item/user descriptions that are predictive of how a
user will rate an item, however, is not a trivial process. On
the other hand, collaborative filtering (CF) techniques use
correlations between users’ ratings to infer the rating of unrated
items for a user and make recommendations without having
to understand the item or user itself. CF does not depend on
item descriptions and tends to produce higher accuracies than
CBF.

However, CF suffers from the cold-start problem which
occurs when an item cannot be recommended unless it is has
been rated before (first-rater problem) or when a user has
not rated any items (new-user problem). This is particularly
important in domains where new items are frequently added
to a set of items and users are more interested in the new
items. For example, many users are more interested, and likely
to purchase, new styles of shoes rather than out-dated styles
or many users are more interested in watching newly released

movies rather than older movies. Recommending old items
has the potential to drive away customers. In addition, making
inappropriate recommendations for new users who have not
built a profile can also drive away users.

One approach for addressing the cold-start problem is using
a hybrid recommender system that can leverage the advantages
of multiple recommendation systems. Developing hybrid mod-
els is a significant research direction [1], [2], [3], [4], [5].
Many hybrid approaches combine a content-based filter with
a collaborative filter through methods such as averaging the
predicted ratings or combining the top recommendations from
both techniques [6]. In this paper, we present a neural network
model that infers latent item/user trait vectors (latent neural
network or LNN) as a hybrid recommendation algorithm
that addresses the cold-start problem. LNN uses a matrix of
user/item ratings and user/item descriptions to simultaneously
train the weights in a neural network and induce a set of latent
user/item trait vectors for matrix factorization.

By incorporating user/item descriptions, LNN is able to
address the cold-start problem. We also propose a method
for recommending items without any ratings. Most previous
methods require at least some ratings in order to recommend
an item. Using a neural network allows for flexible architecture
configurations to model higher-order and non-linear dependen-
cies in the data. We find that LNN outperforms other content-
based filters and hybrid filters on the cold-start problem.
Additionally, LNN outperforms its predecessor (UBP) and
maintains an accuracy similar to matrix factorization (which
does not implicitly handle the cold-start problem) on non-cold-
start recommendations.

In Section II we review related work to the LNN and in
dealing with the cold-start problem. We then formally describe
LNN in Section III. The results from our experiments are
presented in Section IV followed by our conclusions and
directions for future work.

II. RELATED WORK

Matrix factorization (MF) has become a popular technique,
in part due to its effectiveness with the data used in the
NetFlix competition [7] and is widely considered a state-of-
the-art recommendation technique. Given a matrix X (typically
ratings for items given by users), MF finds two smaller



X

X̂Y

U

Fig. 1. High-level overview of LNN. Induced latent features are used as input to a neural network along with provided user/item features. The network weights
and the latern featuers are updated by calculating the gradient with respect to the error signal.

matrices U and V such that their product approximates X
as close as possible:

X ≈ U×VT = X̂.

These smaller matrices can then be combined to predict all of
the missing elements in the original matrix. The value of an
element from row r and column c in X is calculated as:

x̂rc = ur × vTc + bu + bi

where bu and bi are biases for ur and vc respectively (typically
user and item biases). Since its initial success using stochastic
gradient descent, several other variations of MF have also been
proposed [8], [9], [10]. Salakhutdinov and Mnih extended MF
using probabilistic approaches [11], [12]. Lee et al. extended
MF assuming that the matrix is locally low-rank [13].

While MF is a general technique, it is often used to
recommend items to users. Pure collaborative filtering (CF)
techniques are not able to handle the cold-start problem for
items or users. As a result, several hybrid methods have
been developed that incorporate item and/or user descriptions
into collaborative filtering approaches. The most common, as
surveyed by Burke [6], involves using separate content based
filter (CBF) and CF techniques and then combining their
outputs (i.e. weighted average, combining the output from both
techniques, or switching depending on the context) or using
the output from one technique as input to another. Content-
boosted collaborative filtering [14] uses CBF to fill in the
missing values in the ratings matrix and then the dense ratings
matrix is passed to a collaborative filtering method (in their
implementation, a neighbor based CF).

Other work addresses the cold-start problem by building
user/item descriptions for later use in a recommendation sys-
tem [15]. The Matchbox system [16] uses user and item meta-
data y and z when calculating ratings as:

x̂rc = sr × tTc + bu + bi

where sr = Uryr, tc = Vczc and U and V represent the U
and V matrices from matrix factorization. Other hybrid tech-
niques take a similar approach of using a linear combination
of the item features and the induced latent vectors [12], [17].
Each of these approaches require some known ratings in order
to address the cold-start problem.

In contrast to other hybrid approaches, LNN does not
require a linear combination of latent features. LNN is based
on the idea of generative backpropagation (GenBP) [18] and
expands upon unsupervised backpropagation (UBP) [19]. Both
GenBP and UBP are neural network methods that induce a
set of latent trait vectors. The latent trait vectors form an
internal representation of observed values. GenBP adjusts its
latent vectors while holding the network weights constant. It
has been used to generate labels for images [20], and for
natural language [21]. UBP differs from GenBP in that it trains
network weights simultaneously with the latent vectors, instead
of training the weights as a pre-processing step. LNN is a
further development of UBP that incorporates input features
(i.e. item descriptions) with the latent trait vectors.

In the case where LNN is used with linear activation
functions and no hidden layers, LNN can be described as:

x̂rc = (yr,ur)× vc + bu + bi

where (yr,uc) represents concatenating the given item de-
scriptor vector and the inferred user meta-data vector. LNN
may also be used with nonlinear activation functions and
an arbitrary number of hidden layers and nodes which give
it power to fit nonlinear manifolds. LNN can also make
predictions without any prior ratings from a user/for an item.
When Y is empty, and only a single-layer neural network is
used with a linear activation function, LNN reduces to MF
where the network weights correspond to V and the latent
vectors correspond to U [22].

III. LATENT NEURAL NETWORK

In this section, we formally describe latent neural networks
(LNN). At a high-level, a LNN is a neural network that induces
a set of latent vectors using generative backpropagation while
also updating the weights in the network. Generative backprop-
agation calculates the gradient of the latent vectors with respect
to the error and updates them in a manner similar to how the
weights are updated in the backpropagation algorithm. Figure 1
provides a high-level diagram of LNN. The underlying idea
of LNN is to seamlessly incorporate additional user/item
information into the recommender system. By using non-linear
activation functions, unsupervised backpropagation (UBP) may
be viewed as a non-linear generalization of MF. UBP utilizes
three phases for training to initialize the latent variables, the
weights of the model and then to update the weights and



latent variables simultaneously. LNN further builds on UBP
by integrating item or user descriptions with the latent input
variables.

A. Preliminaries

In order to formally describe LNNs, we define the follow-
ing terms.

• Let X be a given m×n sparse user/item rating matrix,
where m is the number of items and n is the number
of users.

• Let Y be an m × y matrix, representing the given
portion of the item profiles (the item features such as
the movie genres that a movie is in or actors in the
movie). Again, m is the number of items and y is the
number of item features.

• Let U be an m × t matrix, representing the latent
portion of the item profiles. These values are inferred
by LNN. m is the number of items and t represents
the number of latent variables (provided by the user).

• If xrc is the rating for item r by user c in X, then
x̂rc is the predicted rating when yr ∈ Y and ur ∈ U
are concatenated into a single vector qr and then fed
forward into the LNN.

• Let wij be the weight that feeds from unit i to unit j
in the LNN.

• For each network unit i on hidden layer m, let βmi
be the net input into the unit, αmi be the output or
activation value of the unit, and δmi be an error term
associated with the unit.

• Let l be the number of hidden layers in the LNN.
• Let g be a vector representing the gradient with

respect to the weights of the LNN, such that gij is
the component of the gradient that is used to refine
wij .

• Let h be a vector representing the gradient with
respect to the latent inputs of the LNN, such that hi
is the component of the gradient that is used to refine
uri ∈ ur.

We use item descriptions, but user descriptions could easily be
used by transposing the X and using user descriptions instead
of item descriptions.

As using generative backpropagation to compute the gradi-
ent with respect to the latent inputs, h, is less commonly used,
we provide a derivation of it here. We compute each hi ∈ h
from the presentation of a single element xrc ∈ X since we
assume that X is typically high-dimensional and sparse. It is
significantly more efficient to train with the presentation of
each known element individually. We begin by defining an
error signal for an individual element, Erc = (xrc − x̂rc)

2,
and then express the gradient as the partial derivative of this
error signal with respect to each latent input in U (the non-
latent inputs Y do not change):

hi =
∂Erc
∂uri

. (1)

The latent input uri affects the value of Erc through the net
value of a unit (βji) and further through the output of a unit
(αji). Using the chain rule, Equation 1 becomes:

hi =
∂Erc
∂α0c

∂α0c

∂β0c

∂β0c
∂uri

(2)

where α0c and β0c represent, respectively, the output values
and the net input values of the output nodes (the 0th layer).
The backpropagation algorithm calculates ∂Erc

∂α0c

∂α0c

∂β0c
(which

is ∂Erc

∂βj,i
for a network unit) as the error term δji associated

with a network unit. Thus, to calculate hi, the only additional
calculation to the backpropagation algorithm that needs to be
made is ∂βjc

∂uri
. For a single layer perceptron:

∂β0c
∂uri

=
∂

∂uri

∑
t

wtc urt

which is non-zero only when t equals i and is equal to wic
since the error is being calculated with respect to a single
element in X. When there are no hidden layers (l = 0) and
using the error from a single element xrc:

hi = −wicδc. (3)

If there is at least one hidden layer (l > 0), then,

∂β0c
∂uri

=
∂β0c
∂α1

∂α1

∂β1

. . .
∂αl
∂βl

∂βl
∂uri

,

where αk and βk are vectors that represent the output values
and the net values for the units in the kth hidden layer. As part
of the error term for the units in the lth layer, backpropagation
calculates ∂β0,c

∂α1

∂α1

∂β1
. . . ∂αl

∂βl
as the error term associated with

each network unit. Thus, the only additional calculation for hi
is:

∂βl
∂uri

=
∂

∂uri

∑
j

∑
t

wjt urt.

As before, ∂βl

∂uri
is non-zero only when t equals i. For networks

with at least one hidden layer:

hi = −
∑
j

wijδj . (4)

Equation 4 is a strict generalization of Equation 3. Equation 3
only considers the one output unit, c, for which a known target
value is being presented, whereas Equation 4 sums over each
unit, j, into which the latent value uri feeds.

B. Three-Phase Training

To integrate generative backpropagation into the training
process, LNN uses three phases to train U and W: 1) the
first phase computes an initial estimate for the latent vectors,
U, 2) the second phase computes an initial estimate for the
network weights, W, and 3) the third phase refines them
both together. All three phases train using stochastic gradient
descent. In phase 1, the latent vectors in U are induced
while there are no hidden layers to avoid the complexities of
nonlinear separations. Likewise, phase 2 allows the weights to
converge without having to train against moving inputs (i.e.
U is held constant). These two preprocessing phases initialize
the system (consisting of both latent vectors and weights) to a
good initial starting point, such that gradient descent is more
likely to find a local optimum of higher quality. Empirical
results comparing three-phase and single-phase training show
that three-phase training produces more accurate results than
single-phase training, which only refines U and W together
(see Gashler et al. [19]).



Algorithm 1 LNN(U,Y,X, η′, η′′, γ, λ)
1: Initialize each element in U with small random values
∼ N (0, 0.01)
// First phase of training
// Create a temporary single-layer perceptron for initial
// training of U

2: Let T be the weights of a single-layer perceptron
3: Initialize each element in T with small random values
∼ N (0, 0.01)

4: η ← η′; s′ ←∞
5: while η > η′′ do
6: s← train epoch(U,Y,X,T, λ, true, 0)
7: if 1− s/s′ < γ then η ← η/2
8: s′ ← s
9: end while

// Second phase of training
// Hold U constant for training of W

10: Let W be the weights of a multi-layer perceptron with l
hidden layers, l ≥ 0

11: Initialize each element in W with small random values
12: η ← η′; s′ ←∞
13: while η > η′′ do
14: s← train epoch(U,Y,X,W, λ, false, l)
15: if 1− s/s′ < γ then η ← η/2
16: s′ ← s
17: end while

// Third phase of training
// Update both U and W

18: η ← η′; s′ ←∞
19: while η > η′′ do
20: s← train epoch(U,Y,X,W, 0, true, l)
21: if 1− s/s′ < γ then η ← η/2
22: s′ ← s
23: end while
24: return {U,W}

Pseudo-code for the LNN algorithm, which trains U and
W in three phases, is given in Algorithm 1. LNN calls the
train epoch function (shown in Algorithm 2) which performs
a single epoch of training. Matrices containing the known data
values, X, and the item descriptions, A, are passed into LNN
along with the parameters η′, η′′, γ, λ. η is the learning rate
and s′ is used to store the previous error score. We note that
many techniques could be used to detect convergence. Our
implementation decays the learning rate whenever predictions
fail to improve by a sufficient amount. Convergence is detected
when the learning rate η falls below η′′. γ specifies the amount
of improvement that is expected after each epoch, or else the
learning rate is decayed. λ is the regularization term used in
train epoch. LNN returns U and W. W is a ragged matrix
containing weight values for an MLP that maps from each vi
to an approximation of xi ∈ X.

C. Stochastic gradient descent

For completeness, train epoch is given in Algorithm 2,
which performs a single epoch of training by stochastic
gradient descent. This algorithm is very similar to an epoch
of traditional backpropagation, except that it presents each
element individually, instead of presenting each vector, and
it conditionally refines the latent variables, U, as well as the

Algorithm 2 train epoch(U,Y,X,W, λ, p, l)
1: for each known xrc ∈ X in random order do
2: qr ← (ur,ar)
3: Compute αc by forward-propagating qr into a multi-

layer perceptron with weights W
// Compute an error term for an output unit c and
// backpropagate the error

4: δc ← (xrc − αc)f ′(βc)
5: for each hidden unit i feeding into output unit c do
6: δi ← wicδcf

′(βi)
7: end for
8: for each hidden unit j in an earlier hidden layer (in

backward order) do
9: δj ←

∑
k wjkδkf

′(βj)
10: end for

// Refine W by gradient descent
11: for each wij ∈W do
12: gij ← −δjαi
13: end for
14: W←W − η(g + λW)

// Refine U by gradient descent
// Only update U during phases 1 and 3

15: if p = true then
16: for i from 0 to t− 1 do
17: if l = 0 then hi ← −wicδc

else hi ← −
∑
j wijδj

18: end for
19: ur ← ur − η(h+ λur)
20: end if
21: end for
22: s← measure RMSE with X
23: return s

weights, W. The variable p represents which pass of training
LNN is in (whether or not to update the latent variables
U. Generative backpropagation is implemented in lines 16-
19 making use of the error term(s) δ used in backpropagation
to update the weights.

D. Recommending New Items

For many existing hybrid approaches, new items cannot
be recommended unless they have recieved as least a certain
amount of ratings. Thus, the cold start problem refers to
recommending items that have very few ratings. Here, we
propose a method for recommending items that have not
received any ratings. Predicting a new item poses a challenge
since the latent variables for a new item have not been induced.
Recall that a content-based filtering creates a model for each
user based on item descriptions and corresponding user ratings.
LNN, on the other hand, produces a single model which is
beneficial when using all of the ratings because the mutual
information between users and items can be shared. The shared
information is contained in the latent variables. The quality of
the latent variables depends on the number of ratings that a
user has given and/or an item has received.

To compensate for the lack of latent variables for the
new items, we utilize the new item prediction function that
takes a vector ynewItem representing the description of the
new item and is outlined in Algorithm 3. At a high level,



Algorithm 3 new item prediction(ynewItem)
1: Let count be a map containing the count of how many

times each rating was predicted
2: Initialize each element in count to 0
3: num← 100; distThresh← 0
4: neighbors← getNeighbors(ynewItem, num)
5: for i from 0 to num− 1 do
6: numR← number of ratings for neighbors[i]
7: if numR > 50 && dist(neighbors[i]) > dist then
8: qnew ← (vneighbors[i],ynewItem)
9: prediction← rounded prediction of qnew

10: counts[prediction]+ = numRatings
11: end if
12: end for
13: return maxIndex(counts)

new item prediction uses ynewItem to find the most similar
items. The induced latent input variables for each similar item
are concatenated with ynewItem and fed into a trained LNN to
predict a rating for the new item. The weighted mode of the
predicted ratings of the new item is then returned. The rating
from each neighbor is weighted according to how many times
it has been rated. By weighting, we mean when selecting the
mode from a set of numbers, the predicted rating is added r
times to the set where r is the number times that the neighbor
item has been rated. We chose to use the mode rather than
the mean because the mode is more robust to outliers and
achieves better empirical results on the validation sets in our
experimentation. As we used binary item descriptions of movie
genres, we only considered using the latent variables from
items that have the same genre(s) (has a distance of 0). We also
only consider items that have been rated at least 50 times. The
value of 50 was chosen based on the evaluation of a content-
based predictor [23]. The number of times that an item has
been rated helps to determine the quality of the induced latent
variables for an item and provides a confidence level for latent
variables.

IV. EXPERIMENTAL RESULTS

In this section we present the results from our experiments.
We examine LNN using the MovieLens1 data sets. Although
the well-known NetFlix dataset is larger, the MovieLens data
sets provide richer meta descriptions (in the form of movie
genres), which we use to evaluate the effectiveness of LNN in
addressing the cold start problem. The runtime complexity of
LNN is approximately the same as matrix factorization in the
case where only a single layer is used, and it scales linearly
with the number of weights in the neural network. Therefore,
LNN can easily handle datasets as large as, or larger than,
the NetFlix data. Other data sets provide unstructured data
such as twitter information or a set of friends on last.fm from
which input variables could be created. As this paper focuses
on the performance of LNN rather than feature creation from
unstructured data, we chose to use the MovieLens data set.

The MovieLens data set has multiple versions of different
sizes. We examine the versions “ml-100k”, “ml-1m”, and “ml-
10M100k”. The ml-100k data set contains 100,000 ratings

1http://www.grouplens.org

TABLE I. THE MAE FOR EACH RECOMMENDATION TECHNIQUE.

ml-100k ml-1m ml-10M100k
Alg Val Test Val Test Val Test
CBCF 0.72 0.92 0.91 0.91 - -
CBF 1.04 1.04 1.01 1.01 0.99 0.98
LNN 0.71 0.74 0.68 0.70 0.64 0.65
LNN3PT 0.71 0.72 0.68 0.69 0.64 0.64
MF 0.72 0.73 0.67 0.67 0.61 0.61
NLPCA 0.73 0.74 0.69 0.69 0.63 0.64
UBP 0.73 0.74 0.69 0.70 0.65 0.65

from 943 users on 1682 movies where each user has rated
at least 20 movies. It has a density level of 6.3%. The ml-1m
data set contains 1,000,209 ratings from 6,040 users on 3,952
movies and has a density level of 4.2%. The ml-10M100K data
set contains 10,000,054 ratings from 71,567 users on 10,681
movies and has a density level of 1.3%.

We compare LNN with several other recommendation
systems: 1) content-boosted collaborative filtering (CBCF),
2) content-based filtering (CBF), 3) nonlinear principle com-
ponent analysis (NLPCA), 4) unsupervised backpropagation
(UBP), and 5) matrix factorization (MF). We use LNN with
and without three phase training. This is equivalent to a hybrid
UBP and hybrid NLPCA technique. LNN with three phase
training is denoted as LNN3PT.

For each recommendation system, we test several param-
eter settings. CBF uses a single learning algorithm to learn
the rating preferences of a user. We experiment using naı̈ve
Bayes (as is commonly used Melville et al. [14]), linear
regression, a decision tree, and a neural network trained with
backpropagation. The same learning algorithms are also used
for CBCF. The number of neighbors for the nearest-neighbor
portion of CBCF ranges from 1 to 64. For MF, the number
of latent variables ranges from 2 to 32 and the regularization
term from 0.001 to 0.1. In addition to the values used for MF
for the number of latent variables and the regularization term,
the number of nodes in the hidden layer ranges from 0 to 32
for UBP, NLPCA, LNN, and LNN3PT. For each experiment,
we randomly select 20% of the ratings as a test set. We then
use 10% of the training set as a validation set for parameter
selection. Using the selected parameters, we test on the test
set and using 10-fold cross-validation.

A. Results

The results comparing LNN with the other recommenda-
tion approaches are shown in Table I. We report the mean
absolute error (MAE) for each approach. The bold values
represent the lowest value for each approach. The algorithms
that use latent variables are significantly lower than those that
do not (CBCF and CBF), thus demonstrating the predictive
power of using latent variables for item recommendation.
Latent inputs also allows one to bypass feature engineering
– often a difficult process.

On ml-100k, the addition of the item descriptions to
NLPCA and UBP (LNN and LNN3PT) improves the per-
formance compared to only using the latent variables. The
runtime performance of LNN and LNN3PT is similar to matrix
factorization, which is widely considered state-of-the-art in



TABLE II. THE MAE FOR THE TOP 10 MOST RATED MOVIES (INDIVIDUALLY AND COMBINED) WHEN HELD OUT OF THE TRAINING SET.

alg 106 1182 1356 1407 1654 233 282 614 641 717 Ave

m
l-

10
0k

CBCF 1.045 1.137 1.188 1.326 2.718 0.835 0.831 0.757 1.478 1.079 1.239
CBF 1.130 1.166 1.179 1.337 2.571 0.857 0.883 0.707 1.617 1.137 1.258
LNN 1.218 0.846 0.333 0.975 2.000 0.839 0.750 0.627 0.591 1.268 0.945
LNN3PT 1.148 0.885 0.500 1.075 2.500 0.694 0.774 0.588 0.636 1.152 0.995
alg 106 2070 2470 2509 2676 2678 3430 3462 614 717 Ave

m
l-

1m

CBCF 1.248 0.841 0.733 0.939 0.875 1.029 0.880 1.124 1.030 0.681 0.938
CBF 1.221 0.868 0.862 1.003 1.028 1.045 0.949 1.062 1.042 0.460 0.954
LNN 1.247 0.715 0.864 0.964 1.004 0.972 0.758 0.935 1.174 0.125 0.876
LNN3PT 1.250 0.729 0.867 0.833 1.197 1.060 0.791 0.952 1.222 0.000 0.890
alg 106 2070 2676 26796 3059 3462 59265 614 6966 8909 Ave

10
M

10
0K CBCF - - - - - - - - - - -

CBF 1.242 0.851 0.970 0.591 1.227 0.907 1.162 1.002 1.117 0.629 0.970
LNN 1.013 0.718 0.912 0.569 0.833 1.093 1.013 0.772 1.013 1.013 0.895
LNN3PT 1.006 0.684 0.917 0.655 0.917 1.024 0.566 0.833 0.777 0.250 0.763

recommendation systems when comparing MAE.2 For the
other data sets, the MAE scores are similar to, but do not
exceed those of matrix factorization. In fact, they are similar
to those of NLPCA and UBP. This implies 1) that having more
data improves the values of the latent variables and 2) that the
sparser the ratings matrices are the less predictive the item
descriptions become.

B. Cold Start Problem

The power of LNN and LNN3PT is demonstrated with the
cold-start problem. As was discussed previously, MF and other
pure collaborative filtering techniques are not able to address
the cold-start problem despite being able to perform very well
on items that have been rated previously a certain number of
times. (They also suffer from the gray sheep problem which
occurs when an item has only been rated a small number
of times.) LNN and LNN3PT are capable of addressing the
cold-start problem while still obtaining similar performance
to matrix factorization. To examine the cold-start problem,
we remove the ratings for ten randomly chosen movies from
each data set. The recommendation systems were trained using
the remaining ratings using the parameter setting found in the
previous experiments.

The results for recommending new items using
new item prediction are provided in Table II. The values at
the top of each section of the table correspond to the movie
id in the MovieLens data set. The bold values represent
the lowest MAE value obtained. No single recommendation
system produces the lowest MAE for all of the movies,
suggesting that some recommendation systems are better than
others for a given user and/or item as has been suggested
previously [24]. In most individual cases and on average,
LNN and LNN3PT produce the lowest MAE on the new items.
This shows the importance of using latent variables. CBCF
uses CBF to create a dense matrix (except for the ratings
corresponding to the active user) and then uses a collaborative
filtering technique on the dense matrix to recommend items
to the user. Thus, more emphasis is given to the CBF which
generally produces poorer item recommendations than a
collaborative filtering approach. LNN, on the other hand,
utilizes the latent variables and their predictive power. CBCF

2The values for other versions of matrix factorization that are not based
on stochastic gradient descent perform similarly. The results for other matrix
factorization approaches can be found at http://prea.gatech.edu/features.html#
benchmark on the ml-1m data set. We choose to use stochastic gradient decent
since it is most similar to LNN.

is also very memory and computationally expensive. CBCF
did not finish on the 10M100K data set.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a neural network with latent
input variables capable of recommending unrated items to
users or items to new users which we call a latent neural
network (LNN). The combination of the latent variables and
the input variables allow information and correlations among
the rated items to be represented while also incorporating the
item descriptions in the recommendation. Thus, LNN is a hy-
brid recommendation algorithm that leverages the advantages
of collaborative filtering and content based filtering.

Empirically, a LNN is able to achieve similar results to
state-of-the-art collaborative filtering techniques such as matrix
factorization while also addressing the cold-start problem.
Compared with other hybrid filters and content-based filter-
ing, LNN achieves much lower error when recommending
previously unrated items. As LNN achieves similar error
rates to the state-of-the-art filtering techniques and can make
recommendations for previously unrated items, LNN does not
have to be retrained once new items are rated in order to
recommend them.

As LNN is built on a neural network, it is capable of
modeling higher-order dependencies and non-linearities in the
data. However, the data in the MovieLens data set and many
similar data sets is well suited to using linear models such
as matrix factorization. This may be due in part to the fact
many of the data sets are inherently sparse and nonlinear
models could overfit them and reduce their generalization. As
a direction of future work, we are examining how to better
incorporate the non-linear component of LNN. We are also
looking at integrating both user and item descriptions with
latent input variables to address the new user problem and the
new item problem in a single model.

REFERENCES

[1] P. Cremonesi, R. Turrin, and F. Airoldi, “Hybrid algorithms for recom-
mending new items,” in Proceedings of the 2Nd International Workshop
on Information Heterogeneity and Fusion in Recommender Systems, ser.
HetRec ’11. New York, NY, USA: ACM, 2011, pp. 33–40.

[2] P. Forbes and M. Zhu, “Content-boosted matrix factorization for recom-
mender systems: experiments with recipe recommendation,” in RecSys,
B. Mobasher, R. D. Burke, D. Jannach, and G. Adomavicius, Eds.
ACM, 2011, pp. 261–264.



[3] J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua, “Addressing cold-
start in app recommendation: latent user models constructed from
twitter followers,” in Proceedings of the 36th International ACM SIGIR
Conference on Research and Development in Information Retrieval, ser.
SIGIR ’13. New York, NY, USA: ACM, 2013, pp. 283–292.

[4] N. Koenigstein and U. Paquet, “Xbox movies recommendations: vari-
ational bayes matrix factorization with embedded feature selection.” in
RecSys, Q. Y. 0001, I. King, Q. Li, P. Pu, and G. Karypis, Eds. ACM,
2013, pp. 129–136.

[5] Y. Bao, H. Fang, and J. Zhang, “Topicmf: Simultaneously exploiting
ratings and reviews for recommendation.” in Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Québec, Canada., 2014, pp. 2–8.

[6] R. D. Burke, “Hybrid recommender systems: Survey and experiments,”
User Modeling and User-Adapted Interaction, vol. 12, no. 4, pp. 331–
370, 2002.

[7] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[8] D. D. Lee and H. S. Seung, “Learning the parts of objects by
nonnegative matrix factorization,” Nature, vol. 401, pp. 788–791, 1999.

[9] J. D. M. Rennie and N. Srebro, “Fast maximum margin matrix factor-
ization for collaborative prediction,” in ICML ’05: Proceedings of the
22nd international conference on Machine learning. New York, NY,
USA: ACM, 2005, pp. 713–719.

[10] N. D. Lawrence and R. Urtasun, “Non-linear matrix factorization
with gaussian processes.” in ICML, ser. ACM International Conference
Proceeding Series, A. P. Danyluk, L. Bottou, and M. L. Littman, Eds.,
vol. 382. ACM, 2009, p. 76.

[11] R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in
Advances in Neural Information Processing Systems 20, J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis, Eds. Curran Associates, Inc.,
2007.

[12] R. Salakhutdinov and A. Mnih, “Bayesian probabilistic matrix factor-
ization using Markov chain Monte Carlo,” in Proceedings of the 25th
International Conference on Machine Learning, 2008.

[13] J. Lee, S. Kim, G. Lebanon, and Y. Singer, “Local low-rank matrix ap-

proximation.” in ICML (2), ser. JMLR Proceedings, vol. 28. JMLR.org,
2013, pp. 82–90.

[14] P. Melville, N. Shah, L. Mihalkova, and R. J. Mooney, “Experiments on
ensembles with missing and noisy data.” in Multiple Classifier Systems,
ser. Lecture Notes in Computer Science, vol. 3077, 2004, pp. 293–302.

[15] K. Zhou, S.-H. Yang, and H. Zha, “Functional matrix factorizations for
cold-start recommendation,” in Proceeding of the 34th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’11, 2011, pp. 315–324.

[16] D. H. Stern, R. Herbrich, and T. Graepel, “Matchbox: large scale online
bayesian recommendations,” in Proceedings of the 18th international
conference on World wide web, ser. WWW ’09. New York, NY, USA:
ACM, 2009, pp. 111–120.

[17] I. Porteous, A. U. Asuncion, and M. Welling, “Bayesian matrix factor-
ization with side information and dirichlet process mixtures.” in AAAI,
M. Fox and D. Poole, Eds. AAAI Press, 2010.

[18] G. E. Hinton, “Generative back-propagation,” in Abstracts 1st INNS,
1988.

[19] M. S. Gashler, M. R. Smith, R. Morris, and T. Martinez, “Missing
value imputation with unsupervised backpropagation,” Computational
Intelligence, p. To Appear, 2014.

[20] D. Coheh and J. Shawe-Taylor, “Daugman’s gabor transform as a simple
generative back propagation network,” Electronics Letters, vol. 26,
no. 16, pp. 1241–1243, 1990.

[21] Y. Bengio, H. Schwenk, J. Senécal, F. Morin, and J. Gauvain, “Neural
probabilistic language models,” in Innovations in Machine Learning.
Springer, 2006, pp. 137–186.

[22] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Scalable collaborative
filtering approaches for large recommender systems,” The Journal of
Machine Learning Research, vol. 10, pp. 623–656, 2009.

[23] T. M. Mitchell, Machine Learning. McGraw-Hill New York, 1997,
vol. 1.

[24] J. Lee, M. Sun, G. Lebanon, and S. jean Kim, “Automatic feature
induction for stagewise collaborative filtering,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 314–322.


