
Practical Techniques For Using Neural Networks To
Estimate State From Images

Stephen C. Ashmore
Department of Computer Science

and Computer Engineering
University of Arkansas

Fayetteville, Arkansas 72701, USA
scashmor@uark.edu

Michael S. Gashler
Department of Computer Science

and Computer Engineering
University of Arkansas

Fayetteville, Arkansas 72701, USA
mgashler@uark.edu

Abstract—An important task for training a robot (virtual or
real) is to estimate state. State includes the state of the robot
and its environment. Images from digital cameras are commonly
used to monitor the robot due to the rich information, and low-
cost hardware. Neural networks excel at catagorizing images,
and should prove powerful to estimate the state of the robot
from these images. There are many problems that occur when
attempting to estimate state with neural networks, including high
resolution of images, training time, vanishing gradient, and more.
This paper presents several practical techniques for facilitating
state estimation from images with neural networks.

I. INTRODUCTION

An important task in training a robot controller with
machine learning techniques is estimating the state of the
robot and the environment in which it operates. Digital cam-
eras have increasingly become a very compelling option for
monitoring robots. Due to the rich amount of information
that visual images can provide, the ease with which humans
can relate to them, and the proliferation of low-cost digital
camera hardware, they have largely eclipsed other methods for
monitoring state. However, estimating state from digital images
can be a daunting task. This paper aggregates a collection of
practical techniques that the authors have found to be useful for
facilitating state estimation from images with neural networks.

Recently, deep neural network learning techniques have
made significant progress in working with images, excelling
at such tasks as image recognition, segmentation, and lo-
calization [1]. In particular, convolutional neural networks
have largely claimed the spotlight due to their proficiency in
image classification tasks [2], [3], [4]. These advances have
led to much speculation that highly proficient robots would
soon be forthcoming [5], [6], [7], [8]. However, classifying
images is quite a different task from estimating the state they
represent. There remains somewhat of a gap in the current
literature between the many well-established techniques for
image recognition and the practical knowledge necessary to
apply deep learning methods for estimating state from digital
images. This paper fills some of that gap by describing a
collection of methods that have been found to be effective
for this purpose.

II. PARAMETERIZE THE PIXELS IN TARGET IMAGES

Autoencoders are a popular method for estimating state
from images by reducing them to a low-dimensional rep-

resentation [9]. They are neural networks that attempt to
approximate the identity function, as illustrated in Figure 1.
Traditional autoencoders pass their values through a bottleneck
layer with only a few nodes. The activations in this small layer
form a low-dimensional encoding of the inputs. The portion
of the neural network that computes this encoding is referred
to as the “encoder”, and the remainder is the “decoder”.

Since convolutional neural networks have recently per-
formed so well at the task of digesting images, it is natural
to use convolutional layers in the encoder [10]. But what is
the best way to handle large images in the decoder, on the
output end of the autoencoder? A surprisingly simple approach
is to make the decoder predict only the values of a single
pixel [11]. Two additional inputs are added to the decoder
to specify which pixel should be predicted. This modification
adds several desirable properties to the model:

• Images can be generated with arbitrary resolution be-
cause they are represented as a 2-D function, instead of
a 2-D array of pixels.
• During training, it is not necessary to sample every pixel

of every image. Using a random sampling of pixels is
generally more efficient, since each pixels usually has a
color similar to its neighbors.
• The number of weights in the decoder is no longer tied

to the resolution of the images. Typically, the number of
weights is much smaller, which also improves training
time.

Interestingly, this modification makes the decoder com-
plement an encoder that uses convolutional layers. Whereas
convolutional layers apply the same kernel weights at each
position in the input image to produce the values it feeds into
the next layer, a decoder that predicts the values of only a
single parameterized pixel applies the same neural network
to compute the values of each pixel in the output image.
And, whereas convolutional layers greatly reduce the number
of weights necessary to digest input images, this approach
greatly reduces the number of weights necessary to generate

x s ^
Encoder Decoder x^

Fig. 1. A diagram of a traditional autoencoder.

Predicted Actual
cam 1 cam2 cam 1 cam2

Ti
m

e
 (

sa
m

p
le

s
ta

ke
n
 a

t
in

te
rv

a
ls

)

Fig. 2. Left: Anticipated observations computed from an internal representa-
tion of state. Right: Actual images from digital cameras positioned to observe
a low-cost robotic arm.

output images. Example results obtained using this technique
are shown in Figure 2.

III. MOVE HIGH-DIM INPUTS TO THE OUTPUT END

A common false assumption with neural networks is that
“inputs” must always be fed into the input end of the network.
However, because neural networks are differentiable, gradient
descent can also be used to infer values that could be fed
into the input end of the network to yield particular values
on the output end [12]. The update rule for the inputs is
derived from the same backpropagation algorithm used to
compute the update rule for the weights. The blame terms that
backpropagation computes for the units of the input layer are
simply multiplied by the weights that feed into that layer to
obtain the gradient for the inputs. By adjusting the inputs in the
direction of this gradient, the network predicts values closer
to the target values. So, latent input values can be initialized
to some arbitrary values, such as the origin, then updated by
gradient descent until the network predictions match the target
values.

The cost of attaching sensors to the output end of the
network is that it takes more than a single feed-forward pass
to infer values on the other end. Although this cost can be
significant, there are also some benefits that often outweigh it:

• The weights near the output end of a neural network
train faster than weights near the input end.

function estimate state from images(X)
Assume X is a training set containing n images.
Let S be a set of n latent state vectors, initialized to 0.
until convergence is detected, do:

for each xi ∈ X in random order:
for a number of random pixels drawn from xi:

Feed in the pixel coordinates and si.
Use backpropagation to update weights and si.

return S.

Fig. 3. Pseudo-code to train a stand-alone decoder and simultaneously
estimate the state corresponding with each training image.

• Neural networks do not generally tolerate missing or
sparse input values. However, missing outputs are trivially
handled by using no error (that is, assuming the missing
target values match the predictions).
• To handle very sparse values, the computation associated

with the missing elements can be omitted entirely.

IV. TRAIN A STAND-ALONE DECODER

Instead of using a full autoencoder to estimate state, an
alternative design is to use only a decoder and infer the values
of the encoding. This approach has been demonstrated to be
highly effective for imputing missing values in data [13], [14].
With this design, the decoder is used in a bidirectional manner,
as described with pseudocode in Figure 3.

Two important advantages are obtained from this tech-
nique:

• The encoder was previously the only remaining con-
straint on the resolution of the observed images. By
removing the encoder as a dependency, now cameras with
arbitrary resolution may be used.
• The encoder implicitly applied a smoothing constraint

to the representations of state. That is a good thing when
observations are low in dimensionality. With images,
however, better results are often obtained without it.

To illustrate this last advantage, an autoencoder and stand-
alone decoder were both trained on the MNIST dataset of
handwritten digits. The autoencoder used a topology of 784→
200 → 50 → 10 → 50 → 200 → 784. The stand-alone
decoder used a topology of 10 → 50 → 200 → 784.
The standard split of 60,000 samples was used for training,
and 10,000 samples for testing. (For the stand-alone decoder,
inference was used to estimate state for the test samples
as well, but the weights of the decoder were not updated
when test images were presented.) Figure 4 shows root mean
squared error for reconstructing the images over wall-clock
training time. The autoencoder trained much faster than the
inference approach. It achieved its best results after only 20
seconds of training, then began to overfit the training data.
The inference approach surpassed the autoencoder after 170
seconds of training, and was still improving after 600 seconds.

Notably, the inference approach does not always beat
the autoencoder approach. When only smaller subsets of the
MNIST training data were used for training, for example,
the autoencoder approach did better. The effectiveness of the
inference approach seems to depend on having an abundance
of uncorrelated training data to guide the inference of state.

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
04

4.5

5

5.5

6

6.5

7

7.5

8
re

co
ns

tr
uc

ti
ng

 im
ag

es

Autoencoder

Inference

Time (in seconds)

R

M
S

E
 f

or

Fig. 4. Inference with a stand-alone decoder beats an autoencoder for
reconstructing images from the MNIST dataset.

V. PASSIVELY TRAIN AN ENCODER

The iterative process necessary to infer state using a stand-
alone decoder may seem cumbersome in comparison with an
encoder, since using an encoder would require only a single
feed-forward pass to estimate state. However, with the stand-
alone decoder, it should be noted that an accurate estimate
of state may be inferred without visiting every pixel in the
observed image. When observed images are sufficiently high
in resolution, the stand-alone decoder becomes the faster
approach.

The advantages of both techniques may be leverage by
passively training an encoder on scaled-down versions of the
observed images. This is done by using the scaled-down
images as features or inputs for training the encoder, and
the latent estimates of state as labels or target values. This
approach is passive in that the training of the encoder does
not influence the decoder in any way. Rather, it depends on
the decoder, which is the opposite of how autoencoders behave.
Training an encoder in this passive manner brings the following
desirable properties:

• Training time is reduced because the encoder follows
the decoder, rather than leads it. By contrast, in an
autoencoder, the encoder is the farthest part from the
output units. Thus, due to the problem of vanishing
gradients [15], the encoder responds most slowly to
training patterns. Therefore, removing it as a dependency
of training improves overall training time.
• After training, the encoder can be used to accelerate

inference of state for novel (out-of-band) observations.
This is done by scaling down the new observation and
feeding it through the encoder to compute an initial
estimate of state. The state is then further refined using
inference iterations from pixels sampled from the full
resolution images. Having a reasonable initial estimate
of state significantly reduces the number of inference
iterations needed.
• Since the scaled-down images are used only with the

encoder, and the decoder still uses full resolution images,
the resolution of the scaled-down images may be tuned
without regard to its impact on the final precision of state

u s ^
Dynamics Decoder x^

u s ^
Dynamics Decoder x^

t +1

s^t
t +1t

Fig. 5. Top: A recurrent neural network sufficient to model the dynamics of
a robot. Bottom: State estimates for a training sequence of observations can
be used to train recurrent models with simple supervised learning methods.

estimates.

VI. NONLINEAR DIMENSIONALITY REDUCTION EXCELS
AT PRETRAINING

Nonlinear dimensionality reduction (NLDR) methods are
designed to compute low-dimensional representations of state
from high-dimensional observations. It follows that instead of
initializing the states with zeros, NLDR methods could be used
to pretrain the initial estimates of state (before iterations of
gradient descent are applied to train the decoder and further
refine the representations of state). However, NLDR methods
typically have two properties that make them ill-suited for this
task: (1) They require a necessary neighbor-finding step that
is prone to introduce undesired connections between irrelevant
states [16], and (2) they typically assume that all observations
are independent of each other.

These problems can be mitigated by utilizing the small-but-
significant additional information found in the knowledge that
robot observations are not independent of each other, but are
made in a sequence. This implicitly gives most observations
two known neighbors: the one that precedes it in the sequence,
and the one that follows it. By computing the distance between
these neighbors, a local radius can be determined that is
suitable for finding other observations that should probably
be considered to be neighbors, without attaching to states that
should not be connected.

VII. PRETRAIN STATES IN RECURRENT MODELS OF
DYNAMICS

Another important challenge in applying machine learning
techniques to robots is modeling dynamics. Models of dy-
namics predict how the state will change when given control
vectors are applied to the robot. Recurrent neural networks
are typically used to model dynamics because each new state
depends on the previous state, as well as the control vector
that is applied to the robot. The most common method for
training recurrent neural networks is backpropagation through
time (BPTT) [17], [18]. Unfortunately, recurrent models have
developed a reputation for being difficult to manage because
BPTT is cumbersome to implement, converges very slowly,
and is highly susceptible to local optima [19], [20], [21].

When state has already been estimated for each observation
in the training data, a much easier solution becomes possible:
Simply use both the before and after estimates of state in each
pattern presentation for training the model of dynamics. With
this approach, regular supervised learning approaches, such
as stochastic gradient descent, become effective for training

recurrent models, as illustrated in Figure 5. The recurrent
connections become irrelevant during such training because
the state estimates already capture the transitions within state.
Since digital images often contain such rich information about
state, this approach can sometimes even beat BPTT [11].

It should be noted that many control models, such as
deep Q-networks, typically feed observations as inputs into
the model [22]. This is done so that the model can estimate
state from the observations. However, as described previously
in the context of autoencoders, state may be estimated more
effectively in many cases by inference techniques when obser-
vations are moved to the output end of the model. Therefore,
these techniques can still be combined with model-based
reinforcement learning and other control models.

VIII. KEEP THE STATE RATIONAL

A significant challenge with learned models of dynamics
is that they are inevitably imperfect. When a predicted state
transition differs from the actual state by a small amount,
this error will feed back into the model to influence the next
estimate of state. When errors feed back into the system,
they can compound quickly, leading to irrational predictions.
However, several simple techniques can be applied to mitigate
this effect:

• When new observations are made, a few iterations of
gradient descent can be used to refine the sate. This has a
strong effect of keeping the state accurate. Unfortunately,
this approach cannot be used during open-loop planning,
when no new observations are being made.
• Using as few dimensions as possible for the internal

representation of state will help constrain the system to
stay in rational states.
• Contractive regularization [23] can help to influence the

model to use as much of the state space as possible for
representations of rational states. When a smaller portion
of the state space is used to represent irrational states,
there is lower likelihood of the state drifting into one of
these regions, where predictions will decay quickly.
• If the training observations are believed to thoroughly

sample the space of rational states, another possibility
is to add a soft constraint that weakly pulls the current
representation of state to within some radius of the
nearest state computed to correspond with one of the
training observations. Or, another model could be trained
to estimate the rationality of a given state, and used to
push the state away from irrational states.

IX. CONCLUSION

Estimating the state represented within images is an im-
portant but challenging task at the intersection of machine
learning and robotics. This paper presented a collection of
several techniques that its authors have found to be effective
for this task. Many of them may be considered to be simple
and/or obvious, but it is unlikely that all of them are known to
the community, so this paper seeks to provide a useful resource
for practitioners who use machine learning with robots.

REFERENCES

[1] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[2] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations,” in Proceedings of the 26th Annual International Conference
on Machine Learning. ACM, 2009, pp. 609–616.

[3] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber, “A committee
of neural networks for traffic sign classification,” in Neural Networks
(IJCNN), The 2011 International Joint Conference on. IEEE, 2011,
pp. 1918–1921.

[4] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, 2012, pp. 1106–1114.

[5] G. A. Pratt, “Is a cambrian explosion coming for robotics?” The Journal
of Economic Perspectives, vol. 29, no. 3, pp. 51–60, 2015.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[7] D. Harris, “Robots helped inspire deep learning
and might become its killer app,” 2014. [Online].
Available: https://gigaom.com/2014/07/29/robots-helped-inspire-deep-
learning-and-might-become-its-killer-app/

[8] C. Metz, “‘deep learning will soon give us super-smart robots,” 2015.
[Online]. Available: http://www.wired.com/2015/05/remaking-google-
facebook-deep-learning-tackles-robotics/

[9] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, vol. 28, no. 313 (5786), pp.
504–507, July 2006.

[10] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolu-
tional auto-encoders for hierarchical feature extraction,” in International
Conference on Artificial Neural Networks. Springer, 2011, pp. 52–59.

[11] M. S. Gashler and T. R. Martinez, “Temporal nonlinear dimensionality
reduction,” in Proceedings of the International Joint Conference on
Neural Networks. IEEE Press, 2011, pp. 1959–1966.

[12] G. E. Hinton, “Generative back-propagation,” Abstracts 1st INNS, 1988.
[13] M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, “Non-linear

PCA: a missing data approach,” Bioinformatics, vol. 21, no. 20, pp.
3887–3895, 2005.

[14] M. S. Gashler, M. R. Smith, R. Morris, and T. Martinez, “Missing
value imputation with unsupervised backpropagation,” Computational
Intelligence, 2014. [Online]. Available: http://arxiv.org/abs/1312.5394

[15] S. Hochreiter, “The vanishing gradient problem during learning re-
current neural nets and problem solutions,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 02,
pp. 107–116, 1998.

[16] M. S. Gashler and T. R. Martinez, “Robust
manifold learning with CycleCut,” Connection Science,
vol. 24, no. 1, pp. 57–69, 2012. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/09540091.2012.664122

[17] P. J. Werbos, “Generalization of backpropagation with application to a
recurrent gas market model,” Neural Networks, vol. 1, no. 4, pp. 339–
356, 1988.

[18] M. C. Mozer, “A focused backpropagation algorithm for temporal
pattern recognition,” Backpropagation: theory, architectures, and ap-
plications, pp. 137–169, 1995.

[19] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE transactions on neural
networks, vol. 5, no. 2, pp. 157–166, 1994.

[20] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks.” ICML (3), vol. 28, pp. 1310–1318, 2013.

[21] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[22] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” arXiv preprint arXiv:1507.06527, 2015.

[23] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in Pro-
ceedings of the 28th International Conference on Machine Learning
(ICML-11), 2011, pp. 833–840.

