
Neural Decomposition of Time-Series Data

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present a neural network technique for the analysis and extrapolation of time-1

series data called Neural Decomposition (ND). Units with a sinusoidal activation2

function are used to perform a Fourier-like decomposition of training samples into3

a sum of sinusoids, augmented by units with nonperiodic activation functions to4

capture linear trends and other nonperiodic components. We show how careful5

weight initialization can be combined with regularization to form a simple model6

that generalizes well. Our method generalizes effectively on a dataset of unemploy-7

ment rates as reported by the U.S. Department of Labor Statistics, a time-series8

of monthly international airline passengers, and an unevenly sampled time-series9

of oxygen isotope measurements from a cave in north India. We find that ND10

outperforms popular time-series forecasting techniques including LSTM, echo11

state networks, ARIMA, SARIMA, and SVR with a radial basis function.12

1 Introduction13

The analysis and forecasting of time-series is a challenging problem that continues to be an active14

area of research. Predictive techniques have been presented for an array of problems, including15

weather [7], traffic flow [10], seizures [5], sales [3], and others [20, 21]. Because research in this area16

can be so widely applied, there is great interest in discovering more accurate forecasting methods.17

One approach for analyzing time-series data is to interpret it as a signal and apply the Fourier transform18

to decompose the data into a sum of sinusoids [1]. Unfortunately, despite the well-established utility19

of the Fourier transform, it cannot be applied directly to time-series forecasting. Although the signal20

produced by the Fourier transform exactly reproduces the training samples, it also predicts that the21

same pattern of samples will repeat indefinitely. Another limitation of the Fourier transform is that it22

only uses periodic components, and thus cannot accurately model the nonperiodic aspects of a signal,23

such as a linear trend or nonlinear abnormality.24

Another approach to forecasting time-series data is to use a model such as a neural network. Both25

feedfoward neural networks and recurrent neural networks have been applied to time-series analysis.26

Feedforward networks, such as Fourier neural networks that are initialized to compute the Fourier27

transform, have yielded promising results, but have also proven difficult to train [7]. Recurrent28

networks have tended to perform better at this task, with LSTM networks being among the most29

popular approaches [8]. Other models perform sinusoidal regression [22, 23], borrowing insights from30

harmonic analysis methods like the discrete Fourier transform. Regression and extrapolation-based31

approaches, however, have been largely abandoned in favor of the more successful recurrent models.32

We claim that effective generalization can be achieved by regression and extrapolation using a model33

with two essential properties: (1) it must combine both periodic and nonperiodic components, and34

(2) it must be able to tune its components as well as the weights used to combine them. We present35

a neural network technique called Neural Decomposition (ND) that demonstrates this claim. ND36

decomposes a signal into a sum of constituent parts such that it can construct a signal that is useful37

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

for extrapolating beyond the training samples. Furthermore, ND trains the components into which it38

decomposes the signal represented by training samples, enabling it to find a simpler set of constituent39

parts. In contrast to recurrent models like LSTM networks and harmonic analysis methods such as40

the discrete Fourier transform, ND does not require that samples be measured at regular intervals.41

Additionally, ND facilitates the inclusion of nonperiodic components, such as linear or sigmoidal42

components, to account for trends and nonlinear irregularities in a signal.43

Models like ND have previously been proposed. Sinusoidal regression was studied as early as44

1969 [22], and many papers have investigated related approaches, such as Fourier neural networks45

[17, 12, 7]. Our work differs from existing literature in at least two ways. First, we combine two46

simple insights (the necessity for periodic and nonperiodic components and the necessity for trainable47

components) in a simple, shallow feedforward neural network. Second, we demonstate that in some48

cases, this simple approach is able to outperform popular methods for time-series forecasting, such as49

LSTM. To our knowledge, no shallow network has been able to achieve this level of results before.50

In Section 4, we demonstrate that the simple innovations of ND work together to produce significantly51

improved generalizing accuracy with several problems. We tested with a dataset of unemployment52

rates as reported by the U.S. Department of Labor Statistics, a time-series of monthly international53

airline passengers, and an unevenly sampled time-series of oxygen isotope measurements from a cave54

in north India. We compared against LSTM networks, echo state networks, ARIMA and SARIMA55

models, and SVR with a radial basis function. In each case, ND made better predictions than each of56

the other prediction techniques evaluated.57

2 Related Work58

2.1 Models for Time-Series Prediction59

Many works have diligently surveyed the existing literature regarding forecasting techniques [2, 9,60

4, 24]. Among the most popular statistical approaches are ARIMA models [24]. Seasonal ARIMA61

(SARIMA) is considered to be the state of the art “classical” time-series approach [10].62

In the field of machine learning, three high-level classes of techniques are commonly used to forecast63

time-series data [7]. The first method, perhaps the most common approach, is to train a model to64

directly forecast future samples based on a sliding window of recently collected samples [6]. The65

second method is is to train a recurrent neural network [13]. Recurrent models, such as LSTM66

networks [8], have reported very good results for forecasting time-series. Our model falls into67

the third category of machine learning techniques: regression-based extrapolation. Our model is68

more closely related to a subclass of methods in this category, called Fourier neural networks (see69

Section 2.3). Models in the first two categories have already been well-studied, whereas extrapolation70

with sinusoidal neural networks remains relatively unexplored.71

2.2 Harmonic Analysis72

The harmonic analysis of a signal transforms a set of samples from the time domain to the frequency73

domain. This is useful in time-series prediction because the resulting frequencies can be used to74

reconstruct the original signal (interpolation) and to forecast values beyond the sampled time window75

(extrapolation). Harmonic analysis, also known as spectral analysis or spectral density estimation,76

has been well-studied for decades [14, 19].77

Perhaps the most popular method of harmonic analysis is the discrete Fourier transform (DFT). The78

DFT maps a series of N complex numbers in the time domain to the frequency domain, and its79

inverse can be applied to map frequency domain values back to the time domain. For real-valued80

input, the inverse DFT can be sufficiently described as81

x(t) =

N/2∑
k=0

Rk · cos(
2πk

N
t)− Ik · sin(

2πk

N
t). (1)

Equation 1 is useful as a continuous representation of the real-valued discrete input. Because it82

perfectly passes through the input samples, one might naively expect this function to be a good basis83

2

for generalization. However, the DFT cannot effectively model the nonperiodic components of a84

signal, nor can it form a simple model for series that are not periodic at N .85

Because of these limitations, other approaches to the harmonic analysis of time-series have been86

proposed. Some of these other approaches perform sinusoidal regression to determine frequencies87

that better represent the periodicity of the sampled signal [22, 23]. However, these approaches88

have largely been abandoned in favor of the fast Fourier transform, which allows the DFT to be89

calculated in log(n) time. Like these less popular approaches, our approach uses regression to find90

better frequencies. Our results show that this antiquiated regression-based approach, combined with91

nonlinear components, is able to outperform state of the art methods for time-series prediction.92

2.3 Fourier Neural Networks93

Use of the Fourier transform in neural networks has already been explored in various contexts. The94

term Fourier neural network has been used to refer to neural networks that use a Fourier-like neuron95

[17], that use the Fourier transform of some data as input [12], or that use the Fourier transform of96

some data as weights [7]. Our work is not technically a Fourier neural network, but of these three97

types, our approach most closely resembles the third.98

Silvescu provided a model for a Fourier-like activation function for neurons in neural networks [17].99

His model utilizes every unit to form DFT-like output for its inputs. He notes that by using gradient100

descent to train sinusoid frequencies, the network is able to learn “exact frequency information” as101

opposed to the “statistical information” provided by the DFT. Our approach also trains the frequencies102

of neurons with a sinusoidal activation function.103

Gashler and Ashmore presented a technique that used the fast Fourier transform (FFT) to approximate104

the DFT, then used the obtained values to initialize the sinusoid weights of a neural network that105

mixed sinusoidal, linear, and softplus activation functions [7]. Because this initialization used sinusoid106

units to model nonperiodic components of the data, their model was designed to heavily regularize107

sinusoid weights so that as the network was trained, it gave preference to weights associated with108

nonperiodic units and shifted the weights from the sinusoid units to the linear and softplus units. Use109

of the FFT required their input size to be a power of two, and their trained models were slightly out110

of phase with their validation data. However, they were able to generalize well for certain problems.111

Our approach is similar, except that we do not use the Fourier transform to initialize any weights.112

3 Approach113

In this section, we describe Neural Decomposition (ND), a neural network technique for the analysis114

and extrapolation of time-series data.115

3.1 High-Level Description116

We use a DFT-like model with two simple but important innovations. First, we allow sinusoid117

frequencies to be trained. Second, we augment the sinusoids with a nonperiodic function. The use of118

sinusoids allows our model to fit to periodic data, the ability to train the frequencies allows our model119

to learn the true period of a signal, and the augmentation function enables our model to forecast120

time-series that are made up of both periodic and nonperiodic components.121

Our model is defined as follows. Let each ak represent an amplitude, each wk represent a frequency,122

and each φk represent a phase shift. Let t refer to time, and let g(t) be an augmentation function that123

represents the nonperiodic components of the signal. Our model is defined as124

x(t) =

N∑
k=1

(
ak · sin(wkt+ φk)

)
+ g(t). (2)

Note that the lower index of the sum has changed from k = 0 in the DFT to k = 1 in our model.125

This is because ND can account for bias in the augmentation function g(t), so the 0 frequency is not126

necessary. Therefore, only N sinusoids are required rather than N + 2.127

3

3.2 Topology128

We use a feedforward artificial neural network as the basis of our model. For an input of size N , the129

neural network is initialized with two layers with sizes 1→ m and m→ 1, where m = N + |g(t)|130

and |g(t)| denotes the number of nodes required by g(t). The first N nodes in the hidden layer have131

the sinusoid activation function, sin(t), and the rest of the nodes in the hidden layer have other132

activation functions to compute g(t).133

The augmentation function g(t) can be made up of any number of nodes with one or more activation134

functions. For example, it could be made up of linear units for learning trends and sigmoidal units135

to fit nonlinear irregularities. In our experiments, we used a combination of linear, softplus, and136

sigmoidal nodes for g(t). The network tended to only use a single linear node, which may suggest137

that the primary benefit of the augmentation function is that it can model linear trends in the data.138

Softplus and sigmoidal units tended to be used very little or not at all by the network in the problems139

we tested, but intuitively it seems that nonlinear activation functions could be useful in some cases.140

3.3 Weight Initialization141

The weights of the neural network are initialized as follows. Let each of the N sinusoid nodes in142

the hidden layer, indexed as k for 0 ≤ k < N/2, have a weight wk and bias φk. Each wk represents143

a frequency and is initialized to 2πbk/2c. Each φk represents a phase shift. For each even value144

of k, φk is set to π/2 to transform sin(t+ φk) to cos(t). For each odd value of k, φk is set to π to145

transform sin(t+ φk) to −sin(t). A careful comparison of these initialized weights with Equation 1146

shows that these are identical to the frequencies and phase shifts used by the DFT, except for a missing147

1/N term in each frequency, which is absorbed in the input preprocessing step (see Section 3.4).148

All weights feeding into the output unit are set to small random values. At the beginning of training,149

therefore, the model will predict something like a flat line centered at zero. As training progresses,150

the neural network will learn how to combine the hidden layer units to fit the training data.151

Weights in the hidden layer associated with the augmentation function are initialized to approximate152

the identity function. For example, in g(t) = wt + b, w is randomly perturbed from 1 and b is153

randomly perturbed near 0. Because the output layer will learn how to use each unit in the hidden154

layer, it is important that each unit be initialized in this way.155

3.4 Input Preprocessing156

Before training begins, we preprocess the input data to facilitate learning and prevent the model from157

falling into a local optimum. First, we normalize the time associated with each sample so that the158

training data lies between 0 (inclusive) and 1 (exclusive) on the time axis. If there is no explicit time,159

equally spaced values between 0 and 1 are assigned to each sample in order. Predicted data points160

will have a time value greater than or equal to 1 by this new scale. Second, we normalize the values161

of each input sample so that all training data is between 0 and 10 on the y axis.162

This preprocessing step serves two purposes. First, it absorbs the 1/N term in the frequencies by163

transforming t into t/N , which is why we were able to omit the 1/N term from our frequencies in164

the weight initialization step. Second, it ensures that the data is appropriately scaled so that the neural165

network can learn efficiently. If the data is scaled too large, training will be slow and susceptible to166

local optima. If the data is scaled too small, on the other hand, the learning rate of the machine will167

cause training to diverge and only use linear units and low frequency sinusoids.168

In some cases, it is also appropriate to pass the input data through a filter. For example, financial169

time-series data is commonly passed through a logarithmic filter before being presented for training,170

and outputs from the model are then exponentiated to obtain predictions. We use this filtering method171

in two of our experiments in Section 4.172

3.5 Regularization173

Prior to each sample presentation, we apply regularization on the output layer of the neural network.174

Even though we do not initialize sinusoid amplitudes using the DFT, the network is quickly able175

to learn how to use the initialized frequencies to closely fit the input samples. Without regularizing176

the output layer, training halts as soon as the model fits the input samples, because the measurable177

4

19
50

19
52

19
54

19
56

19
58

19
60

19
62

19
64

19
66

19
70

19
72

19
74

19
76

19
78

2

3

4

5

6

7

8

9

Year

19
68

19
48

ND

SARIMA

Training Samples Testing Samples

ESN

U
ne

m
pl

oy
m

en
t R

at
e

LSTM

Figure 1: A comparison of the four best predictive models on the monthly unemployment rate in the
US. Blue points represent training samples from January 1948 to June 1969 and red points represent
testing samples from July 1969 to December 1977. Only ND, shown in green, successfully predicted
both surges in unemployment that followed the training samples.

error is near zero. By relaxing the learned weights, regularization allows our model to redistribute its178

weights over time. We find that regularization amount is especially important; too much prevented179

our model from learning, but too little caused our model to fall into local optima. In our experiments,180

setting the regularization term to 10−2 avoided both of these potential pitfalls.181

Another important function of regularization in ND is to promote sparsity in the network, so that182

the redistribution of weights by stochastic gradient descent produces as simple a model as the input183

samples allow. We use L1 regularization for this reason. Usually, the trained model does not require184

all N sinusoid nodes in order to generalize well, and this type of regularization enables the network185

to automatically discard unnecessary nodes by driving their amplitudes to zero.186

It is worth noting that we only apply regularization to the output layer of the neural network. Any187

regularization that might occur in the hidden layer would adjust sinusoid frequencies before the188

output layer could learn sinusoid amplitudes. By allowing weights in the hidden layer to change189

without regularization, the network has the capacity to adjust frequencies but is not required to do so.190

4 Validation191

In this section, we report results from three of our experiments that validate the effectiveness of192

Neural Decomposition. In each of these experiments, we used an ND model with an augmentation193

function made up of ten linear units, ten softplus units, and ten sigmoidal units. It is worth noting that194

g(t) is under no constraint to consist only of these units; it could include other activation functions or195

only contain a single linear node. We use a regularization term of 10−2 and a learning rate of 10−3 in196

every experiment to demonstrate the robustness of our approach. We did not tune the meta-parameters197

of ND for each experiment, but we did carefully tune the meta-parameters of competing models for198

each experiment using a grid search.199

In our experiments, we compare ND with LSTM, ESN, ARIMA, SARIMA, and SVR. We used200

PyBrain’s implementation of LSTM networks [16] with one input neuron, one output neuron, and one201

hidden layer. We implemented a grid-search to find the best hidden layer size for the LSTM network202

for each problem and used PyBrain’s RPROP- algorithm to train the network. We used Lukoševičius’203

implementation of ESN [11] and implemented a grid-search to find the best parameters for each204

5

19
50

19
51

19
52

19
53

19
54

19
56

19
57

19
58

19
59

19
60

19
61

100

150

200

250

300

350

400

450

500

550

600

Year

19
49

19
55

ND

SARIMA

Training Samples Testing Samples

ESN

A
irl

in
e

Pa
ss

en
ge

rs

LSTM

Figure 2: A comparison of the four best predictive models on monthly totals of international airline
passengers from January 1949 to December 1960 [2]. Blue points represent the 72 training samples
from January 1949 to December 1954 and red points represent the 72 testing samples from January
1955 to December 1960. ND, shown in green, learns the trend, shape, and growth better than the
other compared models.

problem. We used the R language implementation for ARIMA, SARIMA, and SVR [15]. For the205

ARIMA models, we used a variation of the auto.arima method that performs a grid-search to find206

the best parameters for each problem. For SVR, we used the tune.svm method, which also performs207

a grid-search for each problem. Although these methods select the best models based on the amount208

of error calculated using the training samples, the grid-search is a very slow process. With ND, no209

problem-specific parameter tuning was performed.210

In each figure, the blue points in the shaded region represent training samples and the red points211

represent withheld testing samples. The curves on the graph represent the predictions made by212

the four models that made the most accurate predictions (only two models are shown in the fourth213

experiment because only two models could be applied to an irregularly sampled time-series). The214

actual error for each model’s prediction is reported for all experiments and all models in Table 1.215

The LSTM network tended to fall into local optima, and was thus very sensitive to the random seed.216

Running the same experiment with LSTM using a different random seed yielded very different results.217

In each experiment, therefore, we tried the LSTM model 100 times for each topology tested in our218

grid-search and selected the result with the highest accuracy to present for comparison with ND.219

Conversely, ND consistently made approximately identical predictions when run multiple times,220

regardless of the random seed.221

In our first experiment, we demonstrate the effectiveness of ND on real-world data compared222

to widely used techniques in time-series analysis and forecasting. We trained our model on the223

unemployment rate from 1948 to 1969 as reported by the U.S. Bureau of Labor Statistics, and224

predicted the unemployment rate from 1969 to 1977. These results are shown in Figure 1. Blue points225

on the left represent the 258 training samples from January 1948 to June 1969, and red points on the226

right represent the 96 testing samples from July 1969 to December 1977. The four curves represent227

predictions made by ND (green), LSTM (orange), ESN (cyan), and SARIMA (magenta); ARIMA228

and SVR yielded poorer predictions and are therefore omitted from the figure. Grid-search found229

ARIMA(3,1,2) and ARIMA(1,1,2)(1,0,1)[12] for the ARIMA and SARIMA models, respectively.230

ARIMA, not shown, did not predict the significant rise in unemployment. SARIMA, shown in231

magenta, did correctly predict a rise in unemployment, but underestimated its magnitude, and did not232

predict the shape of the data well. SVR, not shown, correctly predicted that unemployment would233

6

14
80

15
00

15
20

15
40

15
60

15
80

16
00

16
20

16
40

16
60

16
80

17
00

17
20

17
40

17
60

17
80

18
00

18
20

18
40

-9.8

-9.6

-9.4

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

-7.8

-7.6

-7.4

Year

O
xy

ge
n

Is
ot

op
e

Re
ad

in
g

Training Samples Testing Samples

ND

SVR

Figure 3: A comparison of two predictive models on a series of oxygen isotope readings in
speleothems in India from 1489 AD to 1839 AD [18]. Blue points represent the 250 training
samples from July 1489 to April 1744 and red points represent the 132 testing samples from August
1744 to December 1839. Only ND and SVR could be applied to this irregularly sampled time-series.
ND, shown in green, is the only model that captures the general shape of the testing samples.

rise, then fall again. However, it also underestimated the magnitude. ESN, shown in cyan, predicted a234

reasonable mean value for the general increase in unemployment, but failed to capture the dynamics235

of the actual data. The LSTM network (shown in orange), with a hidden layer of size 16 found by236

grid-search, predicted the first peak in the data, but leveled off to predict only the mean.237

Results with Neural Decomposition (ND) are shown in green. ND successfully predicted both the238

depth and approximate shape of the surge in unemployment. Furthermore, it correctly anticipated239

another surge in unemployment that followed. ND did a visibly better job of predicting the nonlinear240

trend much farther into the future.241

Our next experiment demonstrates the versatility of Neural Decomposition in its application to242

another real-world dataset: monthly totals of international airline passengers as reported by Chatfield243

[2]. We used the first six years of data (72 samples) from January 1949 to December 1954 as training244

data, and the remaining six years of data (72 samples) from January 1955 to December 1960 as testing245

data. The training data was preprocessed through a log(x) filter and the outputs were exponentiated246

to obtain the final predictions. As in the first experiment, we compared our model with LSTM, ESN,247

ARIMA, SARIMA, and SVR. The predictions of the four most accurate models (ND, LSTM, ESN,248

and SARIMA) are shown in Figure 2; ARIMA and SVR yielded poorer predictions and are therefore249

omitted from the figure. SVR, not shown, predicted a flat line after the first few time steps and250

generalized the worst out of the four predictive models. The ARIMA model found by grid-search251

was ARIMA(2,1,3). ARIMA, not shown, was able to learn the trend, but failed to capture any of252

the dynamics of the signal. Grid-search found ARIMA(1,0,0)(1,1,0)[12] for the SARIMA model.253

Both SARIMA (shown in magenta) and ND (shown in green) were able to accurately predict the254

shape of the future signal, but ND performed better. Unlike SARIMA, ND learned that the periodic255

component gets bigger over time. ESN, shown in cyan, performed similarly to the ARIMA model,256

only predicting the trend and failing to capture seasonal variations. The LSTM network (shown in257

orange), with a hidden layer of size 64 found by grid-search, also failed to capture any meaningful258

seasonality in the training data. Instead, LSTM immediately predicted a valley and a peak that did259

not actually occur, followed by a poor estimation of the mean.260

Our third experiment demonstrates that ND can be used on irregularly sampled time-series. We used261

a series of oxygen isotope readings in speleothems in a cave in India from 1489 AD to 1839 AD as262

7

Table 1: MAPE of all models on the validation problems. Smallest error for each is shown in bold.

Model Labor Airline Isotope
ARIMA 39.42% 12.34% N/A
SARIMA 29.69% 13.33% N/A
SVR 25.14% 47.04% 8.50%
ESN 15.73% 12.05% N/A
LSTM 14.63% 18.95% N/A
ND 10.89% 9.52% 1.89%

reported by Sinha et. al [18]. Because the time intervals between adjacent samples is not constant263

(the interval is about 1.5 years on average, but fluctuates between 0.5 and 2.0 years), only ND and264

SVR models could be applied. ARIMA, SARIMA, ESN, and LSTM cannot be applied to irregular265

time-series because they assume a constant time interval between adjacent samples; these five models266

are therefore not included in this experiment. Figure 3 shows the predictions of ND and SVR. Blue267

points on the left represent the 250 training samples from July 1489 to April 1744, and red points on268

the right represent the 132 testing samples from August 1744 to December 1839. SVR, shown in269

orange, predicted a steep drop in value that does not exist in the testing data. ND, shown in green,270

accurately predicted the general shape of the testing data.271

Table 1 presents an empirical evaluation of each model for the three real-world experiments. We use272

the mean absolute percent error (MAPE) as our error metric for comparisons [10]. For a set of n273

predictions x(t) and a set of n samples xt, MAPE is defined as 1
n

∑n
t=1

∣∣∣xt−x(t)
xt

∣∣∣. Using MAPE, we274

compare Neural Decomposition to ARIMA, SARIMA, SVR, ESN, and LSTM. We found that on the275

unemployment rate problem (Figure 1), ND yielded the best model, followed by LSTM and ESN. On276

the airline problem (Figure 2), ND performed significantly better than all of the other approaches. On277

the oxygen isotope problem (Figure 3), ND outperformed SVR, which was the only other model that278

could be applied to the irregular time-series. Table 1 presents the results of our experiments. In each279

problem, the accuracy of the best algorithm is shown in bold.280

5 Conclusion281

We presented Neural Decomposition, a neural network technique for time-series forecasting. Our282

method decomposes a set of training samples into a sum of sinusoids augmented with additional283

components to enable our model to generalize and extrapolate beyond the input set. Each component284

of the resulting signal is trained so that ND can find a simpler set of constituent signals. ND uses285

careful initialization, input preprocessing, and regularization to facilitate the training process. We286

showed results that demonstrate that our approach is superior to popular techniques LSTM, ESN,287

ARIMA, SARIMA, and SVR in some cases, including the US unemployment rate, monthly airline288

passengers, and an unevenly sampled time-series of oxygen isotopes. We predict that ND will289

similarly perform well on a number of other problems.290

This work makes the two following contributions to the current knowledge. First, it identifies291

two properties necessary for a regression and extrapolation-based model to be effective: trainable292

components and nonperiodic augmentation. Second, it demonstrates that this antiquated regression-293

based approach to time-series analysis is still useful and can outperform state of the art techniques for294

some problems.295

References296

[1] P. Bloomfield. Fourier analysis of time series: an introduction. John Wiley & Sons, 2004.297

[2] C. Chatfield. The Analysis of Time Series: An Introduction. Chapman and Hall/CRC, 6 edition, July 2003.298

[3] T.-M. Choi, Y. Yu, and K.-F. Au. A hybrid sarima wavelet transform method for sales forecasting. Decision299

Support Systems, 51(1):130–140, 2011.300

[4] G. Dorffner. Neural networks for time series processing. In Neural Network World. Citeseer, 1996.301

[5] C. E. Elger and K. Lehnertz. Seizure prediction by non-linear time series analysis of brain electrical302

activity. European Journal of Neuroscience, 10(2):786–789, February 1998.303

8

[6] R. J. Frank, N. Davey, and S. P. Hunt. Time series prediction and neural networks. Journal of Intelligent304

and Robotic Systems, 31(1-3):91–103, 2001.305

[7] M. S. Gashler and S. C. Ashmore. Training deep fourier neural networks to fit time-series data. In306

Intelligent Computing in Bioinformatics - 10th International Conference, ICIC 2014, Taiyuan, China,307

August 3-6, 2014. Proceedings, pages 44–55, 2014.308

[8] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with lstm. Neural309

computation, 12(10):2451–2471, 2000.310

[9] I. Kaastra and M. Boyd. Designing a neural network for forecasting financial and economic time series.311

Neurocomputing, 10(3):215–236, 1996.312

[10] M. Lippi, M. Bertini, and P. Frasconi. Short-term traffic flow forecasting: An experimental comparison of313

time-series analysis and supervised learning. In IEEE Transactions on Intelligent Transportation Systems,314

volume 14, pages 871–882, March 2013.315

[11] M. Lukoševičius. A practical guide to applying echo state networks, volume 7700 of Lecture Notes in316

Computer Science, pages 659–686. Springer Berlin Heidelberg, 2 edition, 2012.317

[12] K. Minami, H. Nakajima, and T. Toyoshima. Real-time discrimination of ventricular tachyarrhythmia318

with fourier-transform neural network. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 46(2),319

February 1999.320

[13] O. Nerrand, P. Roussel-Ragot, D. Urbani, L. Personnaz, and G. Dreyfus. Training recurrent neural networks:321

Why and how ? an illustration in dynamical process modeling., 1994.322

[14] B. G. Quinn. Estimating the number of terms in a sinusoidal regression. Journal of time series analysis,323

10(1):71–75, 1989.324

[15] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical325

Computing, Vienna, Austria, 2015.326

[16] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß, and J. Schmidhuber. PyBrain.327

Journal of Machine Learning Research, 11:743–746, 2010.328

[17] A. Silvescu. Fourier neural networks. In Neural Networks, 1999. IJCNN ’99. International Joint Conference329

on, volume 1, pages 488–491, 1999.330

[18] A. Sinha, G. Kathayat, H. Cheng, S. F. M. Breitenbach, M. Berkelhammer, M. Mudelsee, J. Biswas, and331

R. L. Edwards. Trends and oscillations in the indian summer monsoon rainfall over the last two millennia.332

Nat Commun, 6, 02 2015.333

[19] E. M. Stein and T. S. Murphy. Harmonic analysis: real-variable methods, orthogonality, and oscillatory334

integrals, volume 3. Princeton University Press, 1993.335

[20] F. E. Tay and L. Cao. Application of support vector machines in financial time series forecasting. Omega,336

29(4):309–317, August 2001.337

[21] J. W. Taylor, P. E. McSharry, and R. Buizza. Wind power density forecasting using ensemble predictions338

and time series models. Energy Conversion, IEEE Transactions on, 24(3):775–782, September 2009.339

[22] P. Vanicek. Approximate spectral analysis by least-squares fit. Astrophysics and Space Science, 4(4):387–340

391, 1969.341

[23] Y. Yokouchi. A strong source of methyl chloride to the atmosphere from tropical coastal land. Nature,342

2000.343

[24] G. P. Zhang. Time series forecasting using a hybrid arima and neural network model. Neurocomputing,344

50:159–175, January 2003.345

9

	Introduction
	Related Work
	Models for Time-Series Prediction
	Harmonic Analysis
	Fourier Neural Networks

	Approach
	High-Level Description
	Topology
	Weight Initialization
	Input Preprocessing
	Regularization

	Validation
	Conclusion

