
An Investigation of How Neural Networks Learn
From the Experiences of Peers Through Periodic

Weight Averaging
Joshua Smith

Department Computer Science and
Computer Engineering
University of Arkansas
Fayetteville, AR 72701

Email: jrs023@email.uark.edu

Michael S. Gashler
Department Computer Science and

Computer Engineering
University of Arkansas
Fayetteville, AR 72701

Email: mgashler@uark.edu

Abstract—We investigate a method for cooperative learning
called weighted average model fusion that enables neural net-
works to learn from the experiences of other networks, as well as
from their own experiences. Modern machine learning methods
have focused predominantly on learning from direct training,
but many situations exist where the data cannot be aggregated,
rendering direct learning impossible. However, we show that the
simple approach of averaging weights with peer neural networks
at periodic intervals enables neural networks to learn from
second hand experiences. We analyze the effects that several
meta-parameters have on model fusion to provide deeper insights
into how they affect cooperative learning in a variety of scenarios.

I. INTRODUCTION

The “ultra-social” nature of humans has been recognized
as a primary factor in their general cognitive development
[12]. However, most machine learning methods still focus on
learning exclusively from direct observations. Can machines
also learn to benefit from the experiences of others, as humans
do so effectively? In this paper, we show that the very simple
approach of averaging weights with peer neural networks
at periodic intervals is sufficient to facilitate the effective
transfer of learned knowledge. Our neural networks are able
to demonstrate capabilities they were never directly trained to
have, and converge to approximately the same accuracy as a
single model that was trained with all of the data.

Iterative weight training methods, such as stochastic gradi-
ent descent [3], AdaGrad [8], RMSprop [22], and Adam [15],
have been highly effective at refining models to fit training
data. These methods all iteratively refine the weights of a
model until it fits to some training data. Our approach is based
the idea that by periodically combining the weights of two
peer networks during this iterative training process, learned
knowledge will eventually diffuse throughout a network of
peer neural networks.

One application where cooperative learning can make a
large impact is mining data from hospitals. There are over
five thousand hospitals in the United States alone, and many

more throughout the world. Each one has a large storage
of patient data. In aggregate, this data presumably contains
valuable knowledge that could be mined to discover new
patterns for diagnoses or new treatments [1], [18], [14].
However, due to the personal and sensitive nature of this
data, hospitals are neither willing nor often even permitted
to share this data. Another example where the aggregation
of data is not practical is smart grid technology. So many
devices can now collect so much data so rapidly that it is not
even feasible to transport it all to a central location. Under
such conditions, our method proposes that learning can be
peformed locally, without ever even aggregating the data. This
approach is compelling because learned models can be orders
of magnitude smaller than the raw training data, and we show
that individual models can effectively learn capabilities for
which they were never directly trained.

II. RELATED WORKS

Ensemble learning may be the most well-established ap-
proach for combining models together. Ensembles of neural
networks started with Hansen and Salamon’s work [11]. Since
that time, there have been numerous studies done that build
on their work, such as Multiple Networks Fusion using Fuzzy
Logic [6], Ensembling neural networks: Many could be better
than all [24], Neural Network Ensembles, Cross Validation,
and Active Learning [16], Design of effective neural network
ensembles for image classification purposes [10], Evolutionary
multi-objective generation of recurrent neural network ensem-
bles for time series prediction [21] and Stochastic Multiple
Choice Learning for Training Diverse Deep Ensembles [17].

Ensemble techniques combine the output or predictions
of each neural network in a variety of different ways. This
requires significant computational cost because all of the
models must first be evaluated to generate the prediction. By
contrast, our method reduces computational cost by combining
the learning first, and making predictions later. Ensemble
techniques are also not sufficient to address applications where



4
4
4
4

5
5
5
5

Fig. 1. To demonstrate learning from second-hand experiences, 10 neural
networks were trained using the MNIST dataset, such that each neural network
was only shown one class of digits. Large arrows represent the raw training
data, which does not need to be aggregated at a central location for this
mode of training. Small bi-directional arrows represent the models (which
are typically orders of magnitude smaller than the raw training data) that
were exchanged between peers during training.

data cannot be aggregated because they generally derive their
accuracy from the assumption that all of the models have
been trained to address the same problem. Our model, by
contrast, can aggregate multiple different capabilities into a
single model.

There have been several other approaches that allow neural
networks to train other networks. Caruana and his collab-
orators first showed that it was possible to compress the
knowledge of an ensemble into a single mode [4]. In addition
to their work researchers at Google have developed similar
algorithms [13]. Deep networks have been shown to be able
to handle much larger and more complex tasks than shallow
networks. The algorithms presented in these papers both use a
deep network to train a shallow network. Showing that shallow
networks have the potential to perform just as well on complex
tasks.

Another related approach is transfer learning [?] [?]. Trans-
fer learning methods seek to learn in one domain, then leverage
that learning to improve learning in another domain. This seeks
to enable the newly created network to apply the knowledge
from its predecessor toward learning new tasks. The difference
is that transfer learning would be evaluated based on the
improvement to learning only in the new domain, whereas
cooperative learning would be evaluated based on the ability
to exhibit learning from both sources. Another closely related
approach is Net2Net [5], which uses an existing teacher
network to train a student network. Unlike other algorithms

Fig. 2. Comparison of a model trained on all available data (blue), a model
trained in isolation on just one class of digits (red), and a model trained on just
one class of digits but also allowed to learn from the second-hand experiences
of peer neural networks (green). Second-hand learning is somewhat slower
than learning from direct experience, but eventually converges to be as
accurate as as the model trained on all of the data.

that compress the model [13] [4] [5], this approach expands the
model. They have two separate algorithms: one for expanding
the number of weight within a layer and one for expanding
the number of layer in a network. Both algorithms take nodes
or layers from a teacher network and incorporate them into
a student network. This change in the topology makes the
training process faster because some of the weights, in the
layer, already have values. Unlike our technique, these meth-
ods involve a retraining process. Our technique fuses networks
together as they are trained, so the learning enhancements
occur at training time.

Weight averaging has been used to parallelize stochastic
gradient descent. An algorithm called HogWild [19] calculates
the gradients of parallel networks and combines the gradients
of each network to update the centralized neural network.
Another algorithm called Elastic Averaging SGD [23] finds a
running average of parallel networks as an update rule. These
methods are similar to our approach, but their objective is
different. Whereas they are attempting to obtain performance
gains, we are seeking a new mode of learning that can operate
in cases where data aggregation is prevented, and where
models can benefit from potentially dissimilar experiences of
peer models in a network.

There has also been work done with averaging the weights
of single-layer perceptrons [2], referred to as “Wagging”.
“Wagging” seeks to improve predictive accuracy for a single
layer perceptron. We seek to enable applications that require
training of multilayer perceptrons.

III. METHODS

When training a neural network, an optimization method is
applied to iteratively refine the weights of the model.

A. Model Fusion

In order two fuse two networks, we combine the weights by



Algorithm 1 Weight Averaging Model Fusion
function Model Fusion(N1, N2, F )
A = weights of N1

B = weights of N2

let W be the size of A (which also the size of B).
for w ∈W do

if Aw == 0 then
Aw = Bw

else if Bw == 0 then
Bw = Aw

else
Aw = (1.0 - F)*Aw + F*Bw

Bw = (1.0 - F)*Bw + F*Aw

end if
end for
weights of N1 = A
weights of N2 = B

end function

calculating a pairwise weighted average of their corresponding
weights, as described in Algorithm 1. Since each weight needs
a corresponding weight, both networks need the same archi-
tecture. A “fusion rate” meta-parameter, F, balances the extent
to which each model seeks to retain its existing knowlege
with the extent to which it is willing to be influenced by
the peer model. Intuitively, this parameter directs the rate at
which information will flow throughout the network of neural
networks. The value for F ranges from 0 to 1. Values less
than 0.5 cause the neural networks to favor the knowledge
they learns from direct pattern presentations. Values greater
than 0.5 cause them to prefer knowledge gained from other
neural networks.

As a special case, non-zero weights always dominate over
corresponding weights with a value of zero, no matter what
value is used for the fusion rate. This case enables model
fusion to be used jointly with L1 regularization to promote
better utilization of the weights. Since L1 regularization drives
weights toward zero, this causes it to make room for more
knowledge to be represented.

A “fusion frequency” parameter defines the interval at which
the fusion algorithm is applied during the training process.

B. Fusion Topology

The Fusion topology is the structure of the network of
machine learning models, specifically neural networks (as
opposed to the topology of a neural network itself). These
algorithms iterate through a set of neural networks and perform
weighted average model fusion of pairs of neural networks.
We have evaluated three different fusion topologies: ring fu-
sion topology, random fusion topology, and hypercube fusion
topology.

The ring fusion topology, as described in Algorithm 2, is
similar to a ring network. Each neural network is connected

Algorithm 2 Ring Fusion Topology
function Ring Fusion

let N be a list of neural networks.
let S be size of N.
let F be the fusion rate between 0 and 1.
for s ∈ {0, . . . , S} do

if s+1 <S then
ModelFusion(Ns, Ns+1, F )

else
ModelFusion(NS , N0, F )

end if
end for

end function

to exactly two other networks, which forms a continuous path,
a ring. Given a set of neural networks, N , we iterate through
the set combining each network to it’s neighbor. So N0 and
N1 fuses, then N1 and N2 fuse, until it comes to the end
of the list. Once we reach the end of list we fuse the last
network with the first completing the circle. This accumulates
the knowledge of the each network a the fusion moves around
the ring, eventually end back at the starting network. The
starting network will then have the cumulative knowledge of
all neural network in the ring.

Algorithm 3 Random Fusion Topology
function Random Fusion

let N be a list of neural networks.
let S be size of N.
let F be the fusion rate between 0 and 1.
let R1 and R2 be uniformly distributed between 0 and S.
while S ≥ 2 do
r1 is a random value between 0 and S.
r2 is a random value between 0 and S.
ModelFusion(Nr1, Nr2, F )
S = S − 2

end while
end function

The random fusion topology, as described in Algorithm 3,
consists of a set of neural networks, where random connections
are made between networks in every time model fusion is
performed. Given a set of neural networks, N , we make
random connections between neural networks where every
network is connected to another random network. In the case
where there is an odd number of networks, one network will
be randomly fused with two other networks. All connections
are reset every time fusion is performed. So as fusion is
performed different pairs of networks are learning from each
other and over time every network will communicate with
every other network. This will allow the cumulative knowledge
to stochastically be passed around over time.

The hypercube topology is based upon a hypercube graph.



Algorithm 4 Hypercube Fusion Topology
function Hypercube Fusion

let N be a list of neural networks, that is represented a
n bit binary number.
let S be size of N.
let F be the fusion rate between 0 and 1.
for x ∈ {0, . . . , n} do

for s ∈ {0, . . . , S} do
b = binary number of Ns, with the x bit inverted.
ModelFusion(Ns, Nb, F )

end for
end for

end function

Hypercube graphs, also called a n-cube graph, consists of
2n vertices and 2n−1n edges. A 2-cube graph would be a
square and a 3-cube graph would be a cube. Hypercube graphs
have been proven to be very power topologies [20] [7]. One
of the more attractive properties of a hypercube is its small
diameter. Diameter is the maximum number of links between
any vertices of a graph, for hypercubes the diameter is n. For
model fusion we pass defines each vertex of this graph is a
neural network.

Each neural network is combined with each of its neigh-
boring neural networks. So for a n-cube graph, each network
is fused with n neural networks, as described in Algorithm 4.
This is seeks to take advantage of the small diameter that exists
within hypercube graphs. The small diameter facilitates the
quick transmission of knowledge between any two networks
in the graph, which should allow the individual knowledge of
each neural network to be distributed among it’s peers evenly.

IV. RESULTS

In this section, we present empirical results that show
how weight averaging model fusion affects the transfer of
knowledge during iterative learning processes with neural
networks. We ran all tests on 5 different datasets: MNIST,
CIFAR, Vowel, Image Segmentation, and Wisconsin breast
cancer. For all of our experiments every network we used was
a feed forward neural networks and the tanh activation func-
tion. These experiments were coded using C++ and Waffles
machine learning library [9]. We ran these experiments on 4-
core Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz machine
with 16 GB of RAM.

A. Model Fusion

We evaluated our new technique by running two experi-
ments. For the first test we created a set of 10 neural networks
and trained each of them all an individual digit from the
MNIST dataset. During the training process we periodically
combine the neural networks together so that all 10 networks
can learn to recognize all ten digits. We compare the neural
network that resulted from model fusion to a single neural
network that had been trained on all ten digits and another

Fig. 3. Comparison of the percent error over time for a network that has
trained on all of the data (All Data), one that has trained on part of the data
(Partial Data), and the result of different fusion topology techniques Random,
Ring an Hypercube. All of the networks in this problem had a learning rate of
0.01 , two hidden layers of 80 and 30 nodes, fusion rate of .55, and a fusion
frequency of one epoch.

TABLE I
TABLE OF PREDICTIONS

Percent Error
Dataset Min Max Ring Random Hyper-

cube
MNIST 0.0294 0.0666 0.0292 0.0334 0.0299
CIFAR 0.691131 0.80082 0.718728 0.706829 0.69753
Vowel 0.3752 0.5011 0.3557 0.3687 0.3752
Segment 0.0317 0.0981 0.0418 0.0505 0.0389
Breast-W 0.00971 0.0291 0.00971 0.00971 0.0145

single neural network that had only on images of a single
digit.

We use these two neural networks to create ideal perfor-
mance bounds for our algorithm. If the algorithm does not
introduce any new knowledge to the networks being fused,
then they will perform as if they had only been trained on
images of a single digit. If the algorithm each network teaches
all of the other networks to recognize it’s assigned digit, then
any one of those networks will perform as well as a single
neural network that has been trained on all of the digits. As
shown in Figure 2, the network trained using images of just
one digit achieved around 88 percent error and the network
trained on images of all ten digits achieved around 3 percent
error. The results demonstrate that while learning from the
experience of other neural networks is slower than learning
from direct experiences, it still achieves comparable levels of
accuracy.

The second test we created a collection of 8 neural networks,
where each network was trained on a random subsample of
the data. We compared the final results of Model fusion to
a single neural network that has trained using all of the
data and a single neural network that trained using an eighth
of the data. As before, these two single neural networks
serve as performance bounds that provide perspective on the
performance of weighted average model fusion. Unlike the
first test, these neural networks are only restricted by how
much data they are given, not by what data they are given.



Fig. 4. Comparison of the percent error over time for a network that has
trained on all of the data (All Data), one that has trained on part of the data
(Partial Data), and the result of different fusion topology techniques Random,
Ring an Hypercube. All of the networks in this problem had a learning rate of
0.04 , two hidden layers of 50 and 20 nodes, fusion rate of .55, and a fusion
frequency a fusion frequency of one epoch.

For each of the problems we optimized the individual
networks that we are using for comparison. So for each
problem we performed grid search to find the optimal learning
rate and chose an architecture that performed reasonably well
using non-model fusion networks. Each network was trained
using stochastic gradient descent. Varying topologies were
used amongst the various problems. For cifar we used 3 hidden
layers 3000, 1000 and 10 nodes each, for mnist we used two
hidden layers of 80 and 30 nodes, for the vowel and segment
datasets we used two hidden layers of 50 and 20 nodes, and
for breast-w dataset we used one hidden layer of 8 nodes.

We report the percent error and show how it decreases over
time. In all 5 examples, model fusion achieves comparable
accuracy as the individual network that was trained on all of
the data. This is significant because each model in the model
fusion case was limited to training with a small portion of the
data.

Figure 3 and Figure 4 report the results from the vowel and
MNIST tests, respectively. In both cases, Model Fusion takes
more time to converge than the network that has trained on
all of the data, but it does make predictions with comparable
accuracy. When we tested Model Fusion on the vowel dataset
the single model, that trained on all of the data, overfit to
the data, decreasing in accuracy, but the model fusion did
not. Table 1 reports the percent error for all four experiments.
These results demonstrate how Model Fusion enables neural
networks to obtain the same level of accuracy as a neural
network trained on all of the data. By obtaining this level
of accuracy it proves the weighted average model fusion will
allow neural networks to teach each other. If model fusion
had not worked the prediction accuracy would be closer to
that of the network trained on a subset of the data. However,
in every experiment weighted average model fusion achieved
an accuracy within one percent of the network trained on all
of the data.

Fig. 5. A plot of error measured with several different datasets after 1000
training epochs while applying fusion at a constant interval, but using varying
values for the fusion rate meta parameter. These results exhibit a surprising
robustness to the fusion rate parameter, indicating that almost any non-zero
value will lead to effective transfer of knowledge between neural networks.
Results with ring and hypercube topologies were also obtained. Those exhibit
similar trends to those shown in this representative chart.

B. Meta Parameters

Model Fusion has two meta-parameters: fusion rate and
fusion frequency. In these experiments we demonstrate the
effects each meta-parameter has on the accuracy of model
fusion and therefore draw conclusions on the effects these
parameters plan in the learning process. These two meta-
parameters may be dependent upon each other; so in order to
remove that bias we optimized both of them. We then used the
optimal value for the fusion rate in the frequency experiment
and the optimal frequency value in the fusion rate experiment.

1) Fusion Rate: In order to understand the effects of the
fusion rate, we ran 4 tests on the datasets from the UCI
classification dataset collection: vowel, breast-w, segment, and
splice using all three fusion topologies. For each dataset we ran
the fusion algorithms on 8 different networks. We compared
the resulting accuracy of all fusion rates from 0.00 to 0.99,
with a step size of 0.01.

For the experiments using the random fusion topology,
the error remained consistent across a wide range of fusion
rate above. In the experiments using ring fusion topology
and hypercube fusion topology a similar trend held true.
These results demonstrates model fusion’s robustness to the
fusion rate parameter, which indicates that effective transfer of
knowledge between neural networks is not heavily dependent
upon the weight given to each network.

2) Fusion Frequency: In order to discover the effects that
fusion frequency has on the accuracy of the fusion we con-
ducted tests on 4 datasets from the UCI classification dataset
collection vowel, breast-w, segment, and splice. We ran this
test for all three fusion topologies. For each dataset we tested
the values from 1 epoch to 100 epochs, with a step size of 1.

For all three types a fusion, the error increased the less
frequently the fusion occurred. The experiments on the vowel



Fig. 6. A plot of error measured with several different datasets after 1000
training epochs while applying fusion at varying intervals. As might be
intuitively expected, more frequent fusion generally results in better accuracy
with all of the datasets. These results were obtained using the random fusion
topology. Results with ring and hypercube topologies were also obtained.
Those exhibit similar trends to those shown in this representative chart.

dataset show a consistent trend of the larger the fusion
frequency the less accurate the models become. However, this
is not always true when viewing the trend at smaller intervals.
There several small intervals in all three tests where increasing
the fusion frequency decreased the error in the predictions.

The sporadic changes that exist within all of our experi-
ments suggest that the fusion frequency is problem dependent
and is something that needs to be tuned much like a learning
rate. Nevertheless the overall trend for more frequent fusions
leading to more accurate results seems to hold true in all cases.
So in choosing a fusion frequency, these results suggest that,
lower values tend to produce more accurate results.

V. CONCLUSIONS

We presented an algorithm that enables neural networks,
with only a subset of training data, to learn from each other
while still achieving levels of accuracy comparable to, or
better than, an individual network trained on all available data.
We conducted five experiments and in all five our approach
made predictions within one percent accuracy of the individual
model trained on all of the data. This demonstrates that
weighted average model fusion can achieve comparable levels
of accuracy by allowing neural networks to teach each other.
We explored how the meta-parameters fusion rate and fusion
frequency affected the accuracy of model fusion. For all fusion
topologies model fusion exhibited robustness to the fusion
parameter, learning effectively for almost all non-zero values.
Higher fusion frequencies made more accurate predictions,
but at a more granular level they had sporadic effects on the
accuracy of model fusion.

REFERENCES

[1] E Roland Adams and Anthony Choi. Using neural networks to predict
cardiac arrhythmias. In Systems, Man, and Cybernetics (SMC), 2012
IEEE International Conference on, pages 402–407. IEEE, 2012.

[2] Tim Andersen and Tony Martinez. Wagging: A learning approach which
allows single layer perceptrons to outperform more complex learning
algorithms. In Proceedings of the IEEE International Joint Conference
on Neural Networks IJCNN’99, 1999.

[3] Léon Bottou. Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

[4] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model
compression. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’06, pages
535–541, New York, NY, USA, 2006. ACM.

[5] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerat-
ing learning via knowledge transfer. arXiv preprint arXiv:1511.05641,
2015.

[6] Sung-Bae Cho and Jin H Kim. Multiple network fusion using fuzzy
logic. IEEE Transactions on Neural Networks, 6(2):497–501, 1995.

[7] William James Dally and Brian Patrick Towles. Principles and practices
of interconnection networks. Elsevier, 2004.

[8] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12(Jul):2121–2159, 2011.

[9] Michael Gashler. Waffles: A machine learning toolkit. J. Mach. Learn.
Res., 12:2383–2387, July 2011.

[10] Giorgio Giacinto and Fabio Roli. Design of effective neural network en-
sembles for image classification purposes. Image and Vision Computing,
19(9):699–707, 2001.

[11] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Trans.
Pattern Anal. Mach. Intell., 12(10):993–1001, October 1990.

[12] Esther Herrmann, Josep Call, Marı́a Victoria Hernández-Lloreda, Brian
Hare, and Michael Tomasello. Humans have evolved specialized skills
of social cognition: The cultural intelligence hypothesis. science,
317(5843):1360–1366, 2007.

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[14] Bryan Johnson, Alex Bennett, Myungjae Kwak, and Anthony Choi.
Automated evaluation of fetal cardiotocograms using neural network.
In Systems, Man, and Cybernetics (SMC), 2012 IEEE International
Conference on, pages 408–413. IEEE, 2012.

[15] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[16] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross
validation and active learning. In Proceedings of the 7th International
Conference on Neural Information Processing Systems, NIPS’94, pages
231–238, Cambridge, MA, USA, 1994. MIT Press.

[17] S. Lee, S. Purushwalkam, M. Cogswell, V. Ranjan, D. Crandall, and
D. Batra. Stochastic Multiple Choice Learning for Training Diverse
Deep Ensembles. ArXiv e-prints, 2016.

[18] Rahul Paul, Samuel H Hawkins, Lawrence O Hall, Dmitry B Goldgof,
and Robert J Gillies. Combining deep neural network and traditional
image features to improve survival prediction accuracy for lung cancer
patients from diagnostic ct. In Systems, Man, and Cybernetics (SMC),
2016 IEEE International Conference on, pages 002570–002575. IEEE,
2016.

[19] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hog-
wild: A lock-free approach to parallelizing stochastic gradient descent.
In Advances in Neural Information Processing Systems, pages 693–701,
2011.

[20] Youcef Saad and Martin H Schultz. Topological properties of hyper-
cubes. IEEE Transactions on computers, 37(7):867–872, 1988.

[21] Christopher Smith and Yaochu Jin. Evolutionary multi-objective gener-
ation of recurrent neural network ensembles for time series prediction.
Neurocomputing, 143:302–311, 2014.

[22] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA:
Neural networks for machine learning, 4(2), 2012.

[23] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning
with elastic averaging sgd. In Advances in Neural Information Process-
ing Systems, pages 685–693, 2015.

[24] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks:
Many could be better than all. Artif. Intell., 137(1-2):239–263, May
2002.


