
Learning Resolution-independent Image Representations

Jon C. Hammer and Michael S. Gashler

Department of Computer Science and Computer Engineering
University of Arkansas
Fayetteville, AR, USA

{jhammer, mgashler}@uark.edu

Abstract—Humans are well-known to be highly effective
at comprehending continuous patterns within digital images.
We present a collection of methods that enable analogous
capabilities in deep neural networks. These methods train neu-
ral networks to represent images with continuous resolution-
independent representations. They utilize an MCMC algorithm
that directs attention during the learning phase to regions of
the image that deviate from the current model. An encoding
hypernetwork learns to generalize from a collection of images,
such that it can effectively compute resolution-independent
representations in constant time. These methods have imme-
diate applications in super-resolution scaling of images, image
compression, and secure image processing, and additionally
suggest improved capabilities for image processing with neural
networks in several future applications.

Keywords-Neural Networks; Super Resolution; Hypernet-
works; MCMC

I. INTRODUCTION

The pixel values in a digital image may be viewed as

samples drawn from a function of the form f(x) = i, where

x ∈ R
2 represents the image coordinates, i ∈ R

c is the

corresponding intensity for that coordinate, and c is the

number of channels of the image. Rather than measuring

f directly, it is common for a digital camera to sample

it at uniform intervals. The resulting discrete sequence

{i0,0, i0,1, . . . iH−1,W−1} of intensity values constitutes

a representation of the underlying continuous image from

which it is sampled.

Although generally useful for computer graphics, this

discrete representation does have several important draw-

backs. For example, applying image transformations, such as

scaling and rotation, often requires resampling. In practice,

the ability to do so directly is often limited (e.g. the digital

camera does not have the ability, the subject has moved,

etc.), so new intensity values must be synthesized using the

pixels that have already been captured, adding additional

noise. The discrete representation also has a space require-

ment proportional to the number of samples taken rather

than to the actual entropy of the image. A large image with

little entropy will require more space than a small image

with large entropy.

A continuous representation of the image would not suffer

from these drawbacks, but since f is not typically available,

a learned approximation, f̂ , can be used instead. Such an

approximation can be learned by examining the pixels of

the discrete image representation as long as the underlying

model has sufficient representational capacity.

A popular choice of learning model is the neural network,

especially a multilayer perceptron (MLP). Assuming several

base conditions have been met, MLPs have been shown to be

universal function approximators [1]. As such, they possess

the capability to accurately model f (or any other function,

for that matter) under some setting of the weights and biases

θ. We define f̂(θ, x) = i to be a MLP that maps normalized

image coordinate pairs x to a vector of intensity values i,
where i ∈ Rc. When fully trained, f̂(θ, x) ≈ f(x) ∀x ∈ R2.

In practice, we limit ourselves to x ∈ [0, 1]2 to avoid depen-

dence on the exact dimensions of the image. Given θ, the

intensity for any individual coordinate can be approximated

by performing a feed-forward pass through f̂ . Similarly,

an entire image can be constructed by feeding multiple

coordinates in as a batch.

Importantly, as long as θ is available, f̂ can be used

to generate discrete representations of f with arbitrary

pixel sampling frequencies. In other words, images can be

generated at any resolution. As a result, θ itself constitutes

an alternative representation of the original image f , one

that is invariant with respect to the sampling resolution.

The parameters θ of f̂ can be learned for any given image

using traditional gradient descent-based techniques. A set

of N 〈xi, f(xi)〉 tuples can be obtained directly from the

pixels of the available image, where N is the number of

pixels. This information can be used as training data for an

ordinary regression model.

Interestingly, it is also possible to train another model,

an encoder, to predict a reasonable image encoding θ for a

single image. The encoder is given as input all available

intensity values from an original image and outputs the

set of parameters to be used by f̂ , making it a type of

hypernetwork [2]. The encoder is trained on a collection of

images with a reconstructive error metric utilizing f̂ . The

encoder learns to recognize features that are common to

multiple images and associates them with the parameters

of f̂ necessary to properly reconstruct the image that was

provided as input. A well-trained encoder should even be

able to produce reasonable encodings of images it has never

seen by generalizing from the images it was trained on.

Proc. 2018 IEEE 17th Int’l Conf. on Cognitive Informatics & Cognitive Computing (ICCI*CC’18)
Y. Wang, S. Kwong, J. Feldman, N. Howard, P. Sheu & B. Widrow (Eds.)
978-1-5386-3360-1/18/$31.00 ©2018 IEEE

With this work, our primary contributions are as follows:

• We show that θ can be learned using the discrete

representation of an arbitrary image using traditional

gradient-descent techniques.

• We introduce a Markov-chain Monte Carlo (MCMC)-

based technique that yields improved reconstruction

accuracy and lowers training time compared to standard

batch processing of pixels.

• We present a deep convolutional encoder that is capable

of generating reasonable θ values for unknown images

using a single forward pass through the network. Our

encoder generates the weights of f̂ directly, rather than

requiring extensive training for each image.

• We discuss several practical applications of our work,

including image resizing, compression, and security.

This paper is outlined as follows: In section II, we analyze

related works. In section III, we detail the process by which

θ can be learned iteratively for a single image. In section

IV, we show how a generalized encoder can be trained to

output useful image representations directly. In section V, we

discuss several applications of a resolution-invariant image

representation, including arbitrary scaling, compression, and

security. In section VI, we evaluate our claims using single

images and groups of related images. Section VII concludes

our work.

II. RELATED WORKS

Neural networks have been used for several state-of-the-

art applications in image processing, including recognition

[3], [4], [5], completion [6], [7], style transfer [8], [9], and

generation, especially using Variational Autoencoders [10]

and Generative Adversarial Networks [11], [12]. Many of

these approaches create approximate image representations

implicitly in order to accomplish their stated goals. In

our work, we focus entirely on the problem of generating

reasonable continuous representations of images.

Several other works have put more focus on learning

image representations, including PixelRNN [13], which uses

a recurrent network to generate pixels one a time, and

Ashmore et. al [14], who suggested learning image represen-

tations in order to capture state from either a single image or

a sequence of images. Our approach differs from PixelRNN

in that we can generate an entire image in parallel, as our

model does not make use of recurrent connections (e.g.

LSTM). Ashmore’s approach uses a type of autoencoder

to learn image state, while our approach more closely

resembles a hypernetwork.

A. Hypernetworks

A hypernetwork refers to a neural network capable of

generating the weights for another neural network. For

example, Ha et al. used hypernetworks to generate adaptive

weights for recurrent neural networks [2]. Stanley used

an approach called HyperNEAT to make a neural network

that was highly amenable for evolving images [15]. In our

work, we train a hypernetwork to learn how to approximate

resolution-independent representations of images from raw

pixel values. More specifically, our hypernetwork learns

from many images how to comprehend what is implied by

the discrete sampling of pixels in digital images by digital

cameras.

B. Super-resolution

Recently, the problem of resizing an arbitrary image,

especially to increase the resolution, has been addressed by

deep convolutional neural networks [16], [17]. For example,

Dong et. al [16] demonstrated that super-resolution can be

achieved for a single image by training a deep network

to map between low and high resolution versions of that

image. One application of our work is super-resolution, as

an image can be reconstructed using any arbitrary resolution,

including larger sizes. Our work differs in that a higher

resolution version of the original image is not required for

training. Our work also produces results a single pixel at a

time, rather than one image at a time, although an entire

image may be produced using batching. This allows the

networks to be significantly smaller and faster to evaluate.

Generative adversarial networks have also been applied to

this problem. For example, Ledig et. al [18] have demon-

strated that GANs can effectively generate the fine image

texture details that are often missing from other super-

resolution approaches, which indicates that they are capable

of accurately approximating the original image. Our work

differs in that we can train networks and produce scaled

results using images of any arbitrary resolutions. As such,

our approach is considerably more flexible.

C. Compression

Although not our primary focus, one tangential appli-

cation of our research is the ability to compress images

with reasonable effectiveness, as the size of the resolution-

independent representation depends on the entropy of the

image, rather than the discrete sampling rate. Several oth-

ers have also used neural networks to compress images,

including Toderici et. al [19]. These approaches tend to rely

on learning some form of mapping between the original

image and the compressed version in order to maximize

compression ratios. Our approach is conceptually much

simpler, as θ directly corresponds to the compressed image

representation. Due to the simplicity, however, our method

is unlikely to outperform established SOA techniques in this

particular field.

III. LEARNING A REPRESENTATION FOR SINGLE IMAGES

A. Formulation

Training an MLP to fit to a single image f can be a

relatively straightforward process when the problem has

been well-formulated. The goal is to find a setting of the

parameters of the network θf that minimizes some recon-

struction error E with respect to the pixels of the original

image. More formally,

θf = argminθf (E[f̂(X, θf), f(X)]) (1)

In this equation, E refers to some error metric, and X
represents a B × 2 matrix, where B is the batch size,

containing the normalized image coordinates for each pixel

in the batch. Both f̂(X, θf) and f(X) produce a B × c
matrix representing a c channel intensity (e.g. 3 for RGB, 1

for grayscale, etc.) for each sample. Image coordinates (0, 0)
and (1, 1) refer to the top-left and bottom-right corners of

the image, respectively.

If E is differentiable, equation 1 can be evaluated using

traditional gradient descent-based techniques. For each pixel

batch, the appropriate image coordinate vector X is calcu-

lated and used as the input to the model. The pixel intensity

values themselves are used as labels. If an image contains

N pixel values, then at most N unique training samples are

available for training f̂ .

B. Error Metrics

While the choice of error metric E is theoretically arbi-

trary, certain metrics work better than others in practice. For

example, in our testing, variants of Sum-squared Error (SSE)

seem to be highly susceptible to a local optimum in which

the network learns to output a blank image (all intensities

are either 0 or 1). Experimentally, we found that using mean

Cross-Entropy Error does not have these limitations and

indeed does perform well for most images. Therefore, the

remainder of this paper assumes that mean Cross-Entropy

Error is used for E.

C. Model

The topology of f̂ controls the degree to which it is

capable of approximating f . If the topology is too restrictive,

f̂ will not be able to capture the fine details of the original

image, resulting in a blurred reconstruction. Conversely,

as we will discuss further in sections IV and V, it is

desirable to have as small a representation of θf as possible.

Ideally, the number of weights would be proportional to

the entropy of the image in order to guarantee the network

has the capacity necessary to fully represent f , but a small

fixed topology can be effective in practice. For example, a

2 → 100 → 50 → c fully connected topology with tanh

or relu nonlinearities is sufficient to represent many low

resolution images. The choice of nonlinearity has an effect

when training has not yet fully converged or if the topology

is too restrictive. Otherwise, such a choice has demonstrated

much less significance.

D. Training

f̂ can be trained using mini-batch gradient descent, where

the batch size varies between 1 and N , where N is the

number of pixels in the image. There are several different

strategies that could be used to select the pixels to use in

each mini-batch: A naı̈ve approach would be to group pixels

into blocks of a certain width and height as is often done

when compressing images (e.g. JPEG). The pixels within a

particular block would always be part of the same batch, and

blocks could be chosen for training randomly. This approach

tends to compromise between learning high-frequency and

low-frequency image components based on the size of the

blocks, buts it tends to converge slowly in practice.

A related method is to choose pixels from the image ran-

domly to fill each mini-batch. Random sampling allows the

network to efficiently learn the low-frequency components of

an image due to the potentially large spacial separation be-

tween the pixels in the mini-batch. As a result, this method is

likely to converge more quickly than the block-based method

at the beginning of training. However, since the separation

between pixels is typically much larger than the block-based

approach, learning high-frequency image components can

be more difficult when using random sampling. This effect

tends to slow progress once the low-frequency portions of

the image have been learned.

A potential solution to this problem incorporates the

structure of the image. At a high level, pixels that can already

be reconstructed accurately should not be weighted the same

as pixels that are are far from their correct intensities.

Training would be more efficient if those pixels with large

reconstruction error were more likely to be placed in a batch

than those with small reconstruction error, similar to the idea

of boosting in ensembles.

Pixel weights can be calculated for all of the pixels of

an image by forward-propagating each pixel coordinate and

calculating an appropriate reconstruction error (e.g. |y−ŷ|γ).
This particular approach tends to be expensive in practice

because calculating all pixel weights requires a forward

propagation of the entire image for each training batch.

We propose a significantly more efficient alternative ap-

proach based on the Metropolis algorithm [20], a Markov

Chain Monte Carlo (MCMC) approach often used to gener-

ate random samples from an arbitrary probability distribu-

tion. The first batch contains pixels chosen uniformly from

the original image, but each batch afterwards is generated

using the process outlined in Algorithm 1. For each element

in the batch, we generate a candidate pixel in the same

neighborhood as the original. We then calculate reconstruc-

tion errors for both the original pixel and the candidate.

(We use γ = 0.125 for our experiments.) These are used

as estimates of the probability density function required by

the Metropolis algorithm. Finally, we apply the Metropolis

algorithm directly, choosing probabilistically whether or not

Algorithm 1 Applying the Metropolis-Hastings algorithm

to pixel selection

function NEXT-BATCH-METROPOLIS(f , f̂ , bprev , σ, γ)

b ← bprev
for i ∈ [0, len(b) − 1] do

ci ← bi + N (0, σ)
p(bi) ← |f(bi) − f̂(bi)|γ
p(ci) ← |f(ci) − f̂(ci)|γ
if U(0, 1) < p(ci)

p(bi)
then

bi ← ci
end if

end for
return b

end function

to replace the original pixel with the candidate.

This algorithm tends to cause training to focus on high-

frequency portions of the image, such as edges. As those

pixels are better represented in the training batches, the

network is given more motivation to correctly reconstruct

detailed portions of the image. As a result, this method can

provide sharper reconstructions. Especially when combined

with the random-pixel method to learn low-frequency por-

tions of the image, this MCMC-based approach can lead

to faster convergence and lower overall reconstructive error

compared to either of the other methods alone.

IV. LEARNING A GENERIC ENCODER

In the previous section, we presented an iterative process

for training a network to generate a resolution-independent

image representation. This section generalizes upon that

capability by demonstrating that we can train an encoding

hypernetwork, e, to compute θf directly. This encoder

offers significantly greater utility, as it computes θf in a

single forward pass and learns to generalize effectively from

multiple images. e maps from the pixels of the original

image to a resolution-independent representation, θf . With

this formulation, f̂ no longer needs to be trained iteratively.

Instead it is used as part of an objective function to train the

parameters of e, θe, which now constitutes the complete set

of all optimizable variables.

Here, we show that e can be trained by examining

numerous images, extracting common features and mapping

them to image representations that can then be used by f̂
directly, without the need for additional training at inference

time. As a result, if e has already been sufficiently trained,

θf can be calculated for an arbitrary image using a single

forward pass through the encoder network. Compared to the

approach outlined in the previous section, this approach is

asymptotically faster. Evaluating e for a single input is a

constant time operation, compared to the linear cost of fully

training a network to accomplish the same goal, which is

clearly an improvement.

In addition to the methods outlined in the previous section,

additional procedures unique to this problem are also needed

in order to generate high quality encodings across multiple

images. In this section, we examine these additional proce-

dures, as well as the architecture of the complete encoding

hypernetwork in detail.

A. Model Architecture

Deep convolutional neural networks have demonstrated

that they are capable of extracting high-level features from

images, especially for the purposes of image recognition,

segmentation, and generation [3], [4], [5], [10], [11], [12].

The same properties are desirable in creating a generic

encoder, as we desire to associate image features with

appropriate image representations. As a result, we will use

a similar structure as the basis for our encoder.

The architecture of our model is shown in Figure 1.

We use several layers of convolution, separated by rectified

linear activation units and 2 × 2 max-pooling operations to

extract and downsample important image features. We then

attach two fully connected layers separated by additional

relu activations to map between the extracted features and

the appropriate image representation θf .
Adding a layer of activation units after the output layer

would have the effect of enforcing constraints on the weights

of the MLP f̂ . For example, a tanh activation layer would

constrain all values of θf to fall in the range [-1, 1],

providing a form of regularization. However, in order to

provide e with maximal flexibility to reconstruct images, we

have chosen to omit such an activation layer in our model.

Studying the effects of different activation layers is left as

an area for future work.

B. Training

In order to train e in a traditional supervised fashion, we

would need to have access to a dataset mapping images

to an appropriate representation, θf . While such a dataset

could be generated given a large enough collection of images

using the techniques outlined in Section III, doing so would

require training a network to completion for each image in

that collection, which is not practical.

Instead, we use the function f̂ as an objective metric

to guide training directly. We select an image from the

training collection and forward-propagate it through e to

obtain an initial image encoding θf . That encoding is split

into individual vectors, each of which is reshaped to form

the weight and bias matrices used by f̂ . f̂ is then evaluated

using a mini-batch of pixels selected from the chosen image,

producing a B × c matrix of reconstructed pixels. As in

Section III, we calculate the gradient of some reconstruction

error metric (e.g. Cross-Entropy) with respect to each of the

components of θf , which is then backpropagated back into

e in order to update the encoder’s parameters θe. We repeat

the process K times using the MCMC algorithm presented

(0.0, 0.0)
(0.1, 0.0)

...
(1.0, 1.0)

0.1
0.8
...
0.5

Figure 1: Architecture of the encoder. We use convolution and max pooling to identify important image features and fully

connected layers to learn the mapping to θf .

in Section III to select which pixels to use in each mini-

batch. After the K iterations have passed, another image

from the training set is selected, and the algorithm repeats

until e produces encodings of sufficient quality.

As with most other neural networks, it is possible for

e to overfit, causing it to produce encodings that do not

generalize effectively. In addition to other common training

procedures, we found that by using smaller values of K
(e.g. K = 10) and by making use of slightly weaker

optimizers (e.g. RMSProp [21] instead of ADAM [22]), we

can counteract these types of issues in practice.

V. APPLICATIONS

There are several practical applications for resolution-

independent image representations, including, but not lim-

ited to, image resizing, compression, and security. In this

section, we survey these applications.

A. Image Resizing

A straightforward application of our research is the ability

to resample images to arbitrary resolutions. This is achieved

by feeding a different set of relative pixel coordinates x′ to

f̂ than the model was initially trained on. If Wd and Hd
represent the desired width and height in pixels, x′ can be

calculated as:

h =

⌊
i

Wd

⌋

w = i mod Wd

x′i =
[

w

Wd − 1
,

h

Hd − 1

]
,where 0 ≤ i < Wd ×Hd

(2)

Indeed, we demonstrate in Section VI that simple images

such as MNIST digits can easily be rescaled roughly 20x

larger, from 28 x 28 pixels to 512 x 512 pixels, with

little perceptual loss in quality, while larger images can be

comfortably be scaled by a lesser amount.

B. Compression

Another interesting application of this research is the

ability to efficiently compress images, especially higher-

resolution ones. Our generation network f̂ is designed to

encode images using relatively few weights (e.g. 5,503 for

the topology given in Section III with 3 channels). For the

purposes of storage or transmission, only those weights need

to be persisted, rather than each of the individual pixels of

the original image. As a result, the resolution-independent

encoding can be smaller than the traditional representation.

For example, the famous “Lenna” image often used with

Image Processing research is a 220 x 220 pixel RGB

image, requiring 145,200 bytes uncompressed (220 x 220

x 3 bytes per pixel). The corresponding scale-independent

representation would require 22,012 bytes uncompressed

(5,503 weights x 4 bytes per weight), an 84% reduction in

size or roughly a 7:1 compression ratio. For comparison, a

standard JPEG compressed version of the same image with

the highest quality level requires 47,145 bytes, which is a

67% reduction in size or a 3:1 compression ratio.

With many lossy compression algorithms, ours included,

a tradeoff can be made between file size and reconstruction

quality. By limiting the topology of f̂ , we can simultane-

ously constrain the capacity of the neural network while

introducing additional reconstruction error. In Section VI, we

will demonstrate the results of a more complete compression

test, showing how as the size of the network topology

correlates positively to the reconstruction quality.

C. Security

A final application of our technique is relevant to informa-

tion security, particularly as an additional layer of “security

through obscurity”. Sensitive images that have been encoded

to a resolution-independent format would not be able to

be viewed by a malicious entity without understanding the

significance of the values, similarly to how most binary

formats cannot easily be read without understanding the file

format in which they were saved.

Assuming an attacker did understand that the individual

bits of an image’s resolution-independent representation

could be interpreted as 4-byte floating point values, those

numbers would still be meaningless without the associated

network topology, which would not necessarily have to be

encoded into the file format itself, and an understanding of

what the inputs and outputs to the network represent.

As resolution-independent representations are not cur-

rently commonplace in many real-world scenarios, entities

interested in preserving the privacy of their users could adopt

our technique as an additional line of defense beyond other

orthogonal approaches, such as strong encryption or multi-

factor authentication.

VI. EVALUATION

In this section, we validate the claims that have been made

so far in the paper. Firstly, we demonstrate that a resolution-

independent image encoding can be learned for a single

image using a small MLP. Then we demonstrate our results

for training a single generic encoder that outputs reasonable

image encodings directly. Next, we compare our resampling

approach to several others in common use. Finally, we

perform a comparison between the size of the resolution-

independent encoding and reconstructive accuracy, showing

that the two are positively correlated.

For our evaluation, we will use examples from the MNIST

database of handwritten digits, photo #6 from the Kodak

dataset, and the famous “Lenna” photo often used in image

processing. The resolutions of each (in pixels) are 28 x 28,

192 x 128, and 220 x 220, respectively. The MNIST images

are grayscale, while the others are traditional RGB images.

A. Resolution-independent Image Encodings

We first demonstrate that the techniques discussed in

Section III can be applied to learn a resolution-independent

image encoding directly. For this experiment, a small net-

work was trained on a single image from the MNIST dataset

of handwritten digits using the ADAM optimizer and a

learning rate of 0.001 for 50,000 iterations. This network

was then used to reconstruct the image used for training.

We repeated the process for the first 20 elements of the

MNIST dataset to generate the entries in Figure 2. Notice

that simple images can be reconstructed relatively easily and

that most images show little perceptible error.

Next we show how the choice of batching method affects

the convergence of training. In Section III, three alterna-

tive methods were proposed: block training, random pixel

sampling, and an MCMC-based approach. For this test, two

individual models were created, one for a single MNIST

image, and another for the Lenna image. Both networks were

trained to convergence using each of the three approaches.

For the MCMC-based approach, several iterations of random

sampling were used at the beginning of training before

switching to the MCMC algorithm as discussed in Section

III. The resulting training curves are given in Figure 3. Note

that the figure on the left is displayed in log-scale to better

visualize the differences between each method.

In both cases, block sampling proved to be the least

effective of the three approaches, as it converged slower

and had a higher resulting reconstruction error. The MCMC-

based approach clearly outperformed random sampling for

the MNIST test, but the two approaches produced virtually

identical results for the Lenna test. We believe the MCMC

method tends to perform better when there are steep color

gradients as opposed to shallow ones, as demonstrated by

its performance on the MNIST image.

B. General Image Encoder

In this section, we evaluate the performance of our generic

encoder. For this test, an encoder with the architecture given

in Figure 1 was created and trained on 10,000 images from

the MNIST dataset using the training procedure outlined

in Section IV. That encoder was then used to recreate 10

additional images that were not part of the training set at

their original resolutions, as well as the first 10 images in

the training set. The results are given in Figure 4.

We see that the encoder was generally able to provide im-

age encodings that allowed for good reconstructions of both

the images that were seen previously and those that were not.

Importantly, it seems that some of the imperfections present

in several of the images were effectively corrected by the

encoder. For example, the digit 8 in row 2 appears to have

a ! symbol next to it in the original image, but that symbol

was removed by the encoder. There were also holes in each

of the two previous examples (the 0 and 9) that were filled

during reconstruction. This demonstrates that the encoder

does appear to have some understanding about the content

of the images. It is not simply memorizing and parroting the

encoding space.

C. Scaling

As mentioned in Section V, one application of our work

is the ability to resample an image at a higher resolutions.

To demonstrate the utility, Figure 5 shows how various

interpolation algorithms perform on one particular element

of the MNIST dataset. For this experiment, the original

image, which has a resolution of 28 x 28 pixels, was

upscaled to 512 x 512 pixels (roughly 20x larger), using var-

ious common methods for image interpolation. Our method

captures the unique features of the original image while

avoiding unnecessary blurring or other artifacts.

(a) Original Images (b) Reconstructed Images

Figure 2: A network has been trained on each individual image to generate a corresponding resolution-independent encoding.

Images were then reconstructed at the original resolution.

Figure 3: A comparison of three batching methods on two different images. Left: an arbitrary example from the MNIST

dataset. Right: Lenna.

(a) The first 10 training images. (b) Reconstructions of the first 10
training images.

(c) The 10 testing images. (d) Reconstructions of the 10
testing images

Figure 4: A generic encoder was trained on 10,000 images from the MNIST dataset. Reconstructions were produced without

any additional training.

D. Encoding Size and Reconstruction Error

For our last experiment, we compare how the size of θ
affects reconstructive quality. For this test, we trained several

networks to reproduce three images: an example from the

MNIST database, photo #6 from the Kodak dataset, and the

Lenna image. The size of the topology of f̂ was varied

to produce larger (and more expressive) encodings. The

results are given in Figure 6. Intuitively, as the size of the

encoding increases, so does the reconstructive power of the

network. Note that relatively small topologies are sufficient

to reconstruct images clearly.

VII. CONCLUSION

In this work, we discussed a process for learning

resolution-independent image encodings. We also demon-

strated that a deep convolutional encoder can be trained to

produce reasonable encodings for images, avoiding the cost

of training a complete neural network for each individual

image. We validated our claims with well-known standard

datasets. These new methods offer capabilities in such

areas as super-resolution scaling, image compression, secure

image processing, and other image processing applications.

REFERENCES

[1] G. Cybenko, “Approximation by superpositions of a sig-
moidal function,” Mathematics of control, signals and sys-
tems, vol. 2, no. 4, pp. 303–314, 1989.

[2] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” arXiv preprint
arXiv:1609.09106, 2016.

[3] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus,
“Regularization of neural networks using dropconnect,” in
International Conference on Machine Learning, 2013, pp.
1058–1066.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

(a) NN Interpolation (b) Linear Interpolation (c) Cubic Interpolation (d) Sinc Interpolation (e) Our Approach

Figure 5: Various means of upscaling an element from the MNIST database. Images were increased in resolution from 28

x 28 pixels to 512 x 512 pixels.

10 → 5 → c 20 → 8 → c 25 → 10 → c 35 → 20 → c 50 → 25 → c 80 → 30 → c 100 → 50 → c 150 → 75 → c 200 → 100 → c 250 → 125 → c

Figure 6: Larger topologies yield better image reconstructions. From top: an example from the MNIST dataset, Kodak #6,

Lenna, the topology of f̂ using tanh() activations.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[6] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally and
locally consistent image completion,” ACM Transactions on
Graphics (TOG), vol. 36, no. 4, p. 107, 2017.

[7] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li,
“High-resolution image inpainting using multi-scale neural
patch synthesis,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 1, no. 2, 2017, p. 3.

[8] F. Luan, S. Paris, E. Shechtman, and K. Bala, “Deep photo
style transfer,” CoRR, abs/1703.07511, 2017.

[9] L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann, and
E. Shechtman, “Controlling perceptual factors in neural style
transfer,” in IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2017.

[10] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic
backpropagation and approximate inference in deep genera-
tive models,” arXiv preprint arXiv:1401.4082, 2014.

[11] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio, “Generative adversarial networks,” arXiv preprint
arXiv:1406.2661, 2014.

[12] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gen-
erative adversarial networks,” in International Conference on
Machine Learning, 2017, pp. 214–223.

[13] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel
recurrent neural networks,” arXiv preprint arXiv:1601.06759,
2016.

[14] S. C. Ashmore and M. S. Gashler, “Practical techniques
for using neural networks to estimate state from images,”
in Machine Learning and Applications (ICMLA), 2016 15th
IEEE International Conference on. IEEE, 2016, pp. 916–
919.

[15] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A
hypercube-based encoding for evolving large-scale neural
networks,” Artificial life, vol. 15, no. 2, pp. 185–212, 2009.

[16] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-
resolution using deep convolutional networks,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 38,
no. 2, pp. 295–307, 2016.

[17] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image
super-resolution using very deep convolutional networks,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 1646–1654.

[18] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang et al.,

“Photo-realistic single image super-resolution using a gener-
ative adversarial network,” arXiv preprint, 2016.

[19] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen,
J. Shor, and M. Covell, “Full resolution image compression
with recurrent neural networks,” in Computer Vision and
Pattern Recognition (CVPR), 2017 IEEE Conference on.
IEEE, 2017, pp. 5435–5443.

[20] W. K. Hastings, “Monte carlo sampling methods using
markov chains and their applications,” Biometrika, vol. 57,
no. 1, pp. 97–109, 1970.

[21] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide
the gradient by a running average of its recent magnitude,”
COURSERA: Neural Networks for Machine Learning, 2012.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

		2018-10-03T04:02:49-0400
	Preflight Ticket Signature

