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Abstract. We present a method for training a deep neural network con-
taining sinusoidal activation functions to fit to time-series data. Weights
are initialized using a fast Fourier transform, then trained with regular-
ization to improve generalization. A simple dynamic parameter tuning
method is employed to adjust both the learning rate and regularization
term, such that stability and efficient training are both achieved. We
show how deeper layers can be utilized to model the observed sequence
using a sparser set of sinusoid units, and how non-uniform regularization
can improve generalization by promoting the shifting of weight toward
simpler units. The method is demonstrated with time-series problems to
show that it leads to effective extrapolation of nonlinear trends.

Keywords: neural networks, time-series, curve fitting, extrapolation,
Fourier decomposition

1 Introduction

Finding an effective method for predicting nonlinear trends in time-series data
is a long-standing unsolved problem with numerous potential applications, in-
cluding weather prediction, market analysis, and control of dynamical systems.
Fourier decompositions provide a mechanism to make neural networks with si-
nusoidal activation functions fit to a training sequence [25, 38, 44], but it is one
thing to fit a curve to a training sequence, and quite another to make it extrap-
olate effectively to predict future nonlinear trends. We present a new method
utilizing deep neural network training techniques to transform a Fourier neu-
ral network into one that can facilitate practical and effective extrapolation of
future nonlinear trends.

Much of the work in machine learning thus far has focused on modeling
static systems. These are systems with behavior that depends only on a set of
inputs, and do not change behavior over time. One example of a static system
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is medical diagnosis. An electronic diagnostic tool could be designed to evaluate
the symptoms that a patient reports and attempt to label the patient with a
corresponding medical condition. Presumably, a correct diagnosis depends only
on the reported symptoms. Certainly, time plays a factor in the prevalence of
medical conditions, but the change is often either too slow, or too unpredictable
to warrant consideration in the model. Thus, time is effectively an irrelevant
feature in this domain.

When time is a relevant feature, such as with climate patterns, market prices,
population dynamics, and control systems, one possible modeling approach is to
simply treat time as yet another input feature. For example, one could select a
curve and adjust its coefficients until the curve approximately fits with all the
observations that have been made so far. Predictions could then be made by
feeding in an arbitrary time to compute a future prediction.

Nonlinear curve-fitting approaches tend to be very effective at interpolation,
predicting values among those for which it was trained, but they often strug-
gle with extrapolation, predicting values outside those for which it was trained.
Because extrapolation requires predicting in a region that is separated from all
available samples, any superfluous complexity in the model tends to render pre-
dictions very poor. Thus far, only very simple models, such as linear regression,
have been generally effective at extrapolating trends in time-series data. Find-
ing an effective general method for nonlinear extrapolation remains an open
challenge.

We use a deep artificial neural network to fit time-series data. Artificial neural
networks are not typically considered to be simple models. Indeed, a neural
network with only one hidden layer has been shown to be a universal function
approximator [9]. Further, deep neural networks, which have multiple hidden
layers, are used for their ability to fit to very complex functions. For example,
they have been very effective in the domain of visual recognition [6, 23, 22, 12, 37].
It would be intuitive to assume, therefore, that deep neural networks would be
a poor choice of model for extrapolation. However, our work demonstrates that
a careful approach to regularization can enable complex models to extrapolate
effectively, even with nonlinear trends.

This document is layed out as follows: Section 2 summarizes related works.
Section 3 gives a description of our approach for extrapolation with time-series
data. Section 4 reports results that validate our approach. Finally, Section 5
summarizes the contributions of this work.

2 Related Works

Many papers have surveyed the various techniques for using neural networks and
related approaches to model and forecast time-series data [11, 21, 42, 14, 41, 10].
Therefore, in this section, we will review only the works necessary to give a high-
level overview of how our method fits among the existing techniques, and defer
to these other papers to complete an exhaustive survey of related techniques.
At a high level, the various approaches for training neural networks to model
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Fig. 1. Methods that use neural networks for time-series prediction can be broadly
grouped into three general approaches. Approach A uses samples from the past to
predict samples in the future. Approach B uses recurrent connections to remember
and modify an internal representation of state. Approach C fits a curve to the time-
series data and uses extrapolation to make predictions. There are many variations on
each of these approaches. Our work makes advances within group C.

time-series data may be broadly categorized into three major groups. Figure 1
illustrates the basic models that correspond with each of these groups.

The most common, and perhaps simplest, methods for time-series prediction
involve feeding sample values from the past into the model to predict sample
values in the future [14, 1]. (See Figure 1.A.) These methods require no recur-
rent connections, and can be implemented without the need for any training
techniques specifically designed for temporal data. Consequently, these can be
easily implemented using many available machine learning toolkits, not just those
specifically designed for forecasting time-series data. These convenient properties
make these methods appealing for a broad range of applications. Unfortunately,
they also have some significant limitations: The window size for inputs and pre-
dictions must be determined prior to training. Also, they essentially use recent
observations to represent state, and they are particularly vulnerable to noise in
the observed values.

A more sophisticated group of methods involves neural networks with recur-
rent connections [29]. These produce their own internal representation of state.
(See Figure 1.B.) This enables them to learn how much to adjust their represen-
tations of state based on observed values, and hence operate in a manner more
robust against noisy observations.

Existing methods for training the weights of recurrent neural networks can be
broadly divided into two categories: Those based on nonlinear global optimiza-
tion techniques, such as evolutionary optimization [13, 34, 3], and those based on
descending a local error gradient, such as Backpropagation Through Time [27,
39] or Real-Time Recurrent Learning [31, 26]. Unfortunately, in practice, evolu-
tionary optimization tends to be extremely slow, and it is unable to yield good
results with many difficult problems [35, 34]. Gradient-based methods tend to
converge faster than global optimization methods, but they are more susceptible
to problems with local optima. With recurrent neural networks, local optima
are a more significant problem than with regular feed-forward networks [8]. The



recurrent feedback can create chaotic responses in their error surfaces, and can
distribute local optima in poor regions of the space.

In early instantiations, recurrent neural networks struggled to retain internal
state over long periods of time because the logistic activation functions typically
used with neural networks tend to squash the activations with each time step.
Long Short Term Memory architectures address this problem by using only linear
units with the recurrent loops [19]. This advance has made recurrent neural
networks much more capable for modeling time-series data. Recent advances
in deep neural network learning have also helped to improve the training of
recurrent neural networks [30, 7, 16, 18].

The third, and most relevant, group of methods for forecasting time-series
data is regression followed by extrapolation. Extrapolation with linear regression
has long been a standard method for forecasting trends. Extrapolating nonlinear
trends, however, has generally been ineffective. The general model, shown in
Figure 1.C, is very simple, but training it in a manner that will make generalizing
predictions can be extremely challenging. For this reason, this branch of time-
series forecasting has been much less studied, and remains a relatively immature
field. Our work attempts to jump-start research in this branch by presenting a
practical method for extrapolating nonlinear trends in time-series data.

The idea of using a neural network that can combine basis functions to re-
construct a signal, and initializing its weights with a Fourier transform, has been
previously proposed [33, 25], and more recently methods for training them have
begun to emerge [38, 44]. These studies, however, do not address the important
practical issues of stability during training and regularizing the model to promote
better generalization. By contrast, our work treats the matter of representing
a neural network that can combine basis functions as a solved problem, and
focuses on the more challenging problem of refining these networks to achieve
reliable nonlinear extrapolation.

Many other approaches, besides Fourier neural networks, have been proposed
for fitting to time-series data. Some popular approaches include wavelet networks
[43, 4, 2, 17, 36, 5], and support vector machines [20, 24, 32].

3 Algorithm Description

Our approach uses a deep artificial neural network with a mixture of activation
functions. We train the network using stochastic gradient descent [40]. Each unit
in the artificial neural network uses one of three activation functions, illustrated
in Figure 2, sinusoid: f(x) = sin(x), softplus: f(x) = loge(1 + ex), or identity:
f(x) = x. Using the “identity” activation function creates a linear unit, which is
only capable of modeling linear components in the data. Nonlinear components
in the data require a nonlinear activation function. The softplus units enable
the network to fit to non-repeating nonlinearities in the training sequence. The
sinusoid units enable the network to fit to repeating nonlinearities in the data.

Conspicuously absent in our design are units with a logistic activation func-
tion, which are commonly used in neural networks. We do not use these in our
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Fig. 2. Each unit in our artificial neural network uses one of three activation functions,
sinusoid, softplus, or identity.
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Fig. 3. We used 8 datapoints to represent a curve with a single bend, and fitted two
models to it. The green curve is a model consisting of a single logistic unit that feeds
into a linear unit (to enable it to fit to arbitrary values), and the red curve is a model
consisting of a single softplus unit that feeds into a linear unit. Both models can
approximate this training data closely, but the logistic model exhibits a superfluous
bend that is not directed by any property in the data. Therefore, to be consistent with
Occam’s razor, softplus units are a better choice.

network because they have a tendency to produce bends in the model that are
not motivated by the training data. Figure 3 illustrates this undesirable behavior.
Softplus units, therefore, can be expected to yield better generalizing predictions.
Since softplus units are a softened variant of rectified linear units, this intuition
is consistent with published empirical results showing that rectified linear units
can outperform logistic units [28]. Furthermore, as visualized in Figure 4, two
softplus units can be combined to approximate the behavior of a single logistic
unit. Therefore, any training data that can be fitted with logistic units can also
be fitted with twice as many softplus units. Perhaps, one reason the research
community did not recognize the superiority of softplus units earlier is because
of this necessity to use more of them. Thus, in any pair-wise comparisons using
the same number of network units, logistic units may appear to exhibit more
flexibility for fitting to nonlinear data.



-6

-5
.5 -5

-4
.5 -4

-3
.5 -3

-2
.5 -2

-1
.5 -1

-0
.5 0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1
1+ e-x

log  (1+       ) / 2 - log  (1+      ) / 2e eex+1 -1ex

Fig. 4. The sum of two softplus units can very closely approximate the behavior of
one logistic unit. The green curve is the logistic function. The red curve is the sum of
two softplus units. An even closer approximation than is shown in this figure could be
achieved using fractional parameter values.

As training begins, we use the fast Fourier transform to compute weights
for the sinusoidal units, such that they perfectly reconstruct the training signal.
(Similar approaches have been previously proposed [25, 38, 44].) Unfortunately,
the fast Fourier transform always results in a model that predicts the training
sequence will repeat in the future, as depicted in Figure 5. Such models tend to
generalize very poorly.

3.1 Regularization

In order to achieve better nonlinear extrapolation, it is necessary to simplify
the model. Occam’s razor suggests that the simplest model capable of fitting to
the training data is most likely to yield the best generalizing predictions. The
simplest unit in our model is the linear unit. Therefore, it is desirable to shift as
much of the total weight in the network away from the sinusoid units and onto
the linear units, while still fitting the model with the training data. Where non-
recurring nonlinearities occur in the training data, linear units will not be able
to fit with the training data. In such cases, we want the weight to shift toward
the softplus units. Where repeating nonlinearities occur in the training data,
the sinusoid units should retain some of their initial weight. We accomplish this
weight-shifting during training using a combination of regularization techniques.

A common approach for regularizing a neural network is Lp regularization.
Before each training pattern is presented to the network to update the weights,
Lp regularization reduces the values of the weights by adding the quantity
−wi

|wi| ηλ|wi|p−1 to each weight, wi, in the network. (η is the learning rate, λ is

a small term that controls how strongly the network is regularized, and |wi| is
the absolute value of weight wi.) When p = 2, it is called weight decay, or L2

regularization. L2 regularization has the effect of causing the network to try to
fit to the training data while keeping all of the weights small and approximately
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Fig. 5. Blue points: Training values generated using the equation f(t) = sin(t)+0.1t.
Green curve: A model consisting of sinusoid units with weights initialized by the fast
Fourier transform. Red points: Test values. The fast Fourier transform initializes
weights in a manner that perfectly fits the training sequence, but generalizes very
poorly.

equal in magnitude. This generally prevents the curve or surface represented by
the neural network from exhibiting dramatic bends or folds.

When p = 1, it may be called Manhattan norm regularization, or L1 regu-
larization. L1 regularization tends to promote sparsity in the neural network. In
other words, it causes the network to utilize as few non-zero weights as possible
while still fitting the training data. It tends to be effective when the signal being
modeled is comprised of a small number of components.

In our experimentation, we found that L2 regularization is much more ef-
fective at shifting weight away from the sinusoid units. Since it would be very
difficult to select a topology a priori that contains a sufficient number of network
units without containing an excessive number of network units, it is intuitive
that the sparse models that result from L1 regularization may generalize better.
Therefore, we begin training with L2 regularization to help equalize the distribu-
tion of weight in the netowrk, and we complete training with L1 regularization
to promote sparsity. We found that if we only use L1 regularization, the initial
weights have too much biasing influence on which weights will be zero in the
end. We also tried slowly varying p from 2 down to 1, but we found that com-
puting this exponent is a somewhat computationally expensive operation, and
the simpler approach of using L2 regularization during the first half of training,
and L1 regularization during the second half of training worked nearly as well.

In order to bias the network toward shifting weight onto the simpler units,
we use a non-uniform regularization term. For sinusoid units, we regularize with
the standard term 1− ηλ. For softplus units, we use 1− 0.1ηλ. For linear units,



we use 1− 0.01ηλ. Thus, the strongest regularization is applied to the sinusoid
units, while only very weak regularization is applied to the linear units. These
constant factors (1, 0.1, and 0.01) were selected intuitively. We briefly attempted
to optimize them, but in our experiments small variations tended to have little
influence on the final results. Therefore, we proceeded with these intuitively
selected factors.

3.2 Training procedure

Stochastic gradient descent relies on being able to update the network weights
without visiting every pattern in the training data. This works well with the
logistic activation function because its derivative outputs a value close to zero
everywhere except for input values close to zero. This gives it a very local re-
gion of influence, such that each pattern presentation will only make significant
changes to the few weights that are relevant for predicting that pattern. The
three activation functions we use in our algorithm, however, have non-local re-
gions of influence. In other words, each pattern presentation will often signifi-
cantly affect many or all of the weights in the network. This has the effect of
giving the network a strong tendency to diverge unless a very small learning rate
is used.

In our experiments we found that the values of suitable learning rates varied
significantly as training progressed. Small learning rates, such as 10−4, would
quickly lead to divergence. Even smaller learning rates, such as 10−6 would
work for a larger number of training epochs, but would still result in divergence
at some point during training. The only static learning rates that always lead
to convergence were so small that training became impractical. Therefore, the
crux of our training algorithm relies on dynamically adjusting the learning rate
η, and regularization term λ, during training.

Before training begins, we measure the standard deviation, σ, of the training
data to serve as a baseline for accuracy. The output layer of our neural network is
a single linear unit. We call this layer 4. The layer that feeds into the output layer,
layer 3, contains several units of each type: sinusoid, softplus, and linear. We use
the Fast Fourier Transform to initialize the sinusoid units, and we initialize the
other units in a manner such that they intially have little influence on the output.

Layers 1 and 2 consist of only softplus and linear units. These layers are
initialized to approximate the identity function, then are slightly perturbed.
These layers serve the important purpose of enabling the model to essentially
“warp time” as needed to fit the training data with a sparse set of sinusoid units.
In other words, these layers enable the model to find simple repeating patterns,
even in real-world data where some of the oscillations may not occur at precisely
regular intervals. Because these layers are further from the output end of the
model, backpropagation will refine them more slowly than the other layers. This
is desirable because warping time in the temporal region of the training sequence
is somewhat of a last resort method for simplifying the model. Ironically, deep
neural networks are often cited for their ability to produce complex models, but
we are actually using them to produce a simpler model. More specifically, we



use the deeper layers to “explain away” superfluous complexity in the training
sequence. In other words, it allows the model to fit to the training data without
making other changes that would affect the predictions it makes in the future.
Since the deeper layers contain no sinusoid units, they will specialize only in the
temporal region of the training data, allowing the the sinusoid units that apply
everywhere to fit the data with a simpler model.

After initialization, but before training begins, the entire network already fits
to the training data with a very small root-mean squared error (RMSE). Usually,
it is much smaller smaller than 0.1σ. At this point, the model simply predicts
that the training data repeats itself into the future, as in Figure 5. As training
proceeds, we use stochastic gradient descent to keep the RMSE near 0.1σ, and
regularization to improve generalization. (Smaller values result in a tighter fit,
but longer training times.) As training completes, the model no longer predicts
that the training data will repeat, but predicts a continuation of the nonlinear
trends exhibited in the training data.

It is important that η and λ be dynamically adjusted using different mecha-
nisms, so the ratio between them is free to change. After each epoch of training,
we adjust λ such that RMSE stays near 0.1σ. When the RMSE is bigger than
0.1σ, we make λ smaller, and when the RMSE is smaller than 0.1σ, we make
λ bigger. In contrast with this approach, we make η bigger after each epoch by
multiplying it by a constant factor. Eventually, this will always cause divergence,
which can be detected when the RMSE score becomes very large. When that
occurs, we make η much smaller, and restore the network weights to the last
point with a reasonable RMSE score. Specific implementation details about this
dynamic tuning process are given in the following subsections.

This dynamic parameter tuning process seeks to reduce training time by
keeping the learning rate large while still ensuring convergence. At times, the
learning rate will be too large, which may temporarily have a negative effect on
the dynamic process for tuning λ, but we have found that divergence tends to
happen quickly. Therefore, most of the time, η is within a reasonable range, and
the process for tuning λ can operate without any regard to the current value of
η.

In the following sections we describe implementation details necessary to re-
produce our results. To assist further research, we have integrated our implemen-
tation into the Waffles machine learning toolkit [15], which may be downloaded
from http://waffles.sourceforge.net.

3.3 Initializing Weights

Our neural network contains 4 layers. Layer 4 (the output layer) contains a
single linear unit. Layer 3 contains k sinusoid units, where k is a power of 2. In
our implementation, layer 3 also contains 12 softplus units, and 12 linear units.
(These quantities can be adjusted, but due to our use of L1 regularization, there
is little need to optimize them.)

We will consider an explanation of the fast Fourier transform to be beyond
the scope of this paper, and will proceed only to describe how to use it to initialize



the weights of the sinusoid units. The fast Fourier transform requires a sequence
of k complex values as input, where k is a power of 2. The real component is
given by the values in the training sequence. The imaginary component consists
of all zeros. The output of the fast Fourier transform is also a sequence of k
complex values, which we denote as 〈{r1, i1}, {r2, i2}, {r3, i3}, . . . , {rk, ik}〉. Let
w4

j refer to the weight that feeds from sinusoid unit j into the one output unit in

layer 4. Let b4 refer to the input bias of the unit in layer 4. For each odd value of
j, w4

j is initialized to 2r(j/2+2)/k, where j/2 drops the remainder. For each even

value of j, w4
j is initialized to 2i(j/2+1)/k. The values in w4

k and w4
k−1 must then

be divided by 2. b4 is initialized to r1/k. When the imaginary component of the
input to the fast Fourier Transform is all zeros, the second half of the output
mirrors the first half, so we discard the mirrored half.

Let w3
j refer to the weight that feeds from the first unit in layer 2 into unit

j of layer 3. Let b3j refer to the input bias of unit j in layer 3. For each odd

value of j, w3
j is initialized to 2π(j/2 + 1), where j/2 drops the remainder, and

b3j is initialized to π/2. For each even value of j, w3
j is initialized to 2π(j/2),

and b3j is initialized to π. All other weights feeding into the sigmoid units are
initialized to 0. Note that this parameterization will cause the training values to
be represented for input values between 0 and 1. If the user prefers to represent
them from 0 to k − 1, the weights in layer 3 should be further divided by k.

The weights of the linear units are initialized with the identity matrix and
their input bias values are set to zero, such that these units approximate the
identity function. The weights of the softplus units are also initialized to ap-
proximate the identity function. This is done by setting the weights with the
identity matrix. The input bias for each softplus unit is set to a value, s. Then,
to compensate for this bias, each weight wj that feeds out from the softplus unit
into the next layer is decremented by swj . Our implementation uses the value
s = 10. Larger values will cause the unit to approximate the identity function
more closely by making the net input larger, but will cause the unit to require
more training to overcome this bias when a nonlinear bend occurs in the data.

Layers 1 and 2 each consist of 12 softplus units and 12 linear units. These
are initialized in the same manner as the softplus and linear units in layer 3.
Only one input value (representing time) feeds into layer 1. At this point, the
network should perfectly predict the training sequence, except with some small
allowance for the chosen value of s, and the numerical precisions of the various
computations. Before training begins, we slightly perturb all of the weights and
input biases by small random values. To do this, we add random values from a
Normal distribution with a mean of 0 and a standard deviation of 10−5.

To facilitate dynamic parameter tuning, the standard devation of the training

sequence is computed: σ =
√

1
k

∑
i(vi − µ)2, where vi refers to the ith value in

the training sequence, and µ is the mean value in the training sequence.



3.4 Training

To begin training, we initialize the learning rate η to 10−9, and the regularization
term λ to 1. (Note that these values are dynamically adjusted during training.)
Each training epoch presents each of the k time-series values in the training
sequence to the network in random order. Each presentation involves feeding a
time value in, regularizing the weights, and then using regular backpropagation
to update the weights by stochastic gradient descent. During the first half of the
training epochs, L2 regularization is used. During the second half of the training
epochs, L1 regularization is used. In each of our experiments, we performed 107

epochs of training.
At the end of each training epoch, the values η and λ are dynamically ad-

justed. This is done by measuring the root mean squared prediction error over
the training values, ε. If ε < 0.1σ, then λ = λ ∗ 1.001 else λ = λ/1.001. η is
always scaled by a factor of 1.01. If ε < 0.2σ, then a backup copy of the network
weights is made, or else the weights are restored from the most recent backup
copy and η = 0.1η. We note that all of these constant values could potentially
be optimized, but we anticipate that only a small amount of performance would
actually be gained by doing this, so we did not actually attempt to optimize
them.

4 Validation

In this section, we present visual results showing that our method is able to
model nonlinear trends into the future. Deliberately absent in this section are
quantitative comparisons with corresponding results using recurrent neural net-
work methods. If our intent were to establish our method as the new state of the
art in time-series forcasting, then such comparisons would be essential. However,
our intent is to present advances in methods for extrapolation using nonlinear
regression. This branch of time-series forecasting is not yet as well-refined for
this task as recurrent neural network methods. If the research community were
to only focus on improving the method with the highest precision, then it would
risk becoming stuck in a local optimum. By advancing this alternative approach,
we intend to help open the way for more research interest in this area, which
could potentially lead to different use-cases or a long-term shift in how time-
series forecasting is done.

Our first experiment shows results with a toy problem involving a sine wave
with the addition of a linear trend, f(t) = sin(t)+0.1t. For training, we used this
equation to generate a sequence of 128 values. Upon initializing the weights, but
before training, the model predicts that the training sequence repeats into the
future, as shown in Figure 5. This model assigns significant weight to many of
its sinusoid units. As training proceeds, however, the model is greatly simplified
while still fitting with the training sequence. The final model assigns nearly all
of its weight to just two units: a sinusoid unit and a linear unit, which matches
the equation that was used to generate the training sequence. The results are
shown in Figure 6. The blue dots spanning the left half of the plot represent the
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Fig. 6. Points generated from the function, f(t) = sin(t) + 0.1t. The green line repre-
sents the continuous model after fitting to the blue points on the left half of this chart.
The red points on the right half were withheld during training so they could serve to
evaluate the model.

training sequence. The red dots spanning the right half of the plot are test values
generated by continuing to sample from the same equation. These were with-
held from our algorithm during training. The green curve shows the continuous
predictions of the trained model.

It can be observed that the model does not perfectly fit the training sequence.
This occurs because we trained it to fit with an RMSE of about 0.1σ. One
potential future improvement to our algorithm might be to decay this value as
training progresses, such that a tighter fit is expected at the end of training. As
expected, the model is slightly less accurate with the test sequence than with
the training sequence. Although the predictions are slightly out of phase, they
still model all of the nonlinear trends in the test sequence very well, which is the
problem we attempted to address.

We also evaluated our algorithm on this problem with varying training se-
quence lengths. We tested with sizes of 32, 64, 128, 256, and 512. In every case,
the results were very similar, so we only show results for 128 samples as a rep-
resentative case. These experiments show that only a few samples are really
needed to solve this simple problem, but using many samples does not cause any
problems.

Next, we tested our algorithm with a real-world dataset. We obtained the
weekly temperature measurements in Anchorage Alaska from April 2009 to the
present, from http://noaa.gov. We selected temperature data because it exhibits
clear nonlinear trends, and we chose to use data from Anchorage Alaska because
it appeared to fluctuate from a simple sine wave more than data from other
locations that we considered. Our results are shown in Figure 7. The blue points
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Fig. 7. The points represent weekly temperature measurements in Anchorage Alaska
(in degrees Farenheit) over 5 years beginning in April 2009. The model (shown in
green) was trained only using the blue (left half) points. It failed to anticipate some
of the deep temperature plunges in the last three winters, but generally predicted the
nonlinear temperature trends very well.

on the left half of the plot were given as the training sequence. The red points
on the right half were used as the test sequence.

As with the previous experiment, the test results were slightly out of phase.
This may be explained by the percentage of error that our method tolerates in
the results. It also failed to anticipate some of the deep temperature plunges
that occurred during the last few winters. Nevertheless, our extrapolation was
able to anticipate the principal nonlinear trends quite well. This is impressive
considering that it was trained on data that spanned fewer than 3 full periods of
the primary oscillating trend in the data. Whether the high-frequency fluctua-
tions predicted by the model are noise, or contain some meaningful information,
is not clear. However, it is simple to remove them from the model. This is done
by setting the weights that feed from the high-frequency sinusoid units into the
linear output unit to zero. Figure 8 shows results after zeroing out the highest-
frequency half of the sinusoid nodes as a post-processing step. The non-uniform
shape of the resulting model shows that our model has done more than merely
fit a single sinusoid to the data, and its close fit with the future data shows that
it effectively anticipated nonlinear temperature trends.

To demonstrate that our algorithm works well with real-world data when
few training points are available, we repeated this experiment using only 64
training points. Specifically, we divided the test sequence from the Anchorage
temperature problem into a training and test sequence for this problem. We also
applied a low-pass filter to these results, shown in Figure 9. Note that even with
so few available training points, the extrapolated trend still fits the actual trend
effectively.
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Fig. 8. As a post-processing step, we applied a low-pass filter to our model by setting
the weights feeding from the highest-frequency half of the sinusoid units into the lin-
ear output unit to zero. The resulting model is able to extrapolate the general trends
without predicting high-frequency fluctuations. This also makes it more apparent how
well our model anticipated nonlinear future trends. Whether the high-frequency oscil-
lations that this technique removes were entirely noise, or also contained meaningful
information, remains to be determined.

To show that our method is what leads to these good results, we repeated
the experiment using regular backpropagation. We used an identical network
topology, and trained with regularization, but we did not use the fast Fourier
transform to initialize the weights, and we did not dynamically adjust the pa-
rameters during training. As expected, the results of this approach, shown in
Figure 10 were very poor. No post-processing was performed on these results.
We also performed regular backpropagation with each of the other experiments
in this paper, and obtained even worse results. In most cases, it merely produced
a linear trend line because it became stuck in a local optimum very early in the
training process. We also empirically measured the RMSE scores for both train-
ing methods over each problem, and found that our approach was consistently
better. Because the regular approach never produced reasonable extrapolation
results, we do not report these empirical comparison scores.

To demonstrate the versatility of our method, we tested it with the Mackey-
Glass series. This test is interesting because it involves a chaotic series, rather
than a periodic series. Results with this data are given in Figure 11. As with
previous experiments, the blue points on the left half of the plot represent the
training sequence, the red points on the right half represent the test sequence,
and the green curve is the trained model. We note that the model begins to
prematurely descend very early in the test sequence (at approximately time
1.02), which causes its predictions to be slightly out of phase for the remainder
of the test sequence. Nevertheless, the model clearly exhibits similar patterns
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Fig. 9. To show that our technique works well even when little training data is available,
we trained a model using only the first half of the test data from Figure 8, and tested
this model using the second half of the test data. Low-pass filtering was also used with
these results. Even with so few available training points, the extrapolated trend still
fit the actual trend reasonably well.
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Fig. 10. We trained a neural network on the same data as in Figure 9, but did not
use the fast Fourier transform to initialize weights. These poor results emphasize the
importance of this techniques.

to those in the test set. Significantly, these patterns do not repeat those in the
training sequence, nor does the model repeat its earlier predictions. This shows
that our method can be effective for predicting even non-repeating trends in the
near term.
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Fig. 11. The points are samples from the Mackey-Glass chaotic sequence. The model
(shown in green) was trained only using the blue (left half) points. Although the
predictions are slightly out of phase, they accurately anticipate behavior in the data.
This is significant because these fluctuations do not repeat what occurred in the training
sequence.

5 Summary of Contributions

We presented a method for fitting a neural network to time-series data for the
purpose of extrapolating nonlinear trends in the data. Our method initializes the
weights of sinusoid units using the fast Fourier transform. In order to promote
better generalization, our method adds several units with simpler activation
functions to the network, and then trains in a manner that enables the weight to
shift toward these simpler units, while still fitting to the training data. We utilize
a simple dynamic parameter tuning method to train efficiently while ensuring
that the model always fits the training sequence well. We presented results with
several experiments showing that our method is effective at predicting nonlinear
trends in time-series data. This paper makes several contributions to the current
knowlege, which we itemize here:

• It proposes new theoretical intuition for why deep neural networks can actu-
ally facilitate finding simpler predictive models than can be found with shal-
low networks. Specifically, the deeper layers provide a mechanism to “warp
time” in the temporal region of the training sequence, allowing subsequent
layers to fit it with a sparser set of sinusoid units.

• It illustrates that shifting weight toward simpler units can be promoted
during training by regularizing the complex units more heavily.

• It describes a dynamic method for simultaneously tuning both the learning
rate and regularization terms.

• It shows that dynamic tuning can be an effective solution to the instability
problems that inherently occur with sinusoidal activation functions.

• Most significantly, it unifies all of these techniques into a method for non-
linear extrapolation with time-series data, and demonstrates that it is both
practical and effective.
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