GClasses
GClasses::GNaiveBayes Member List

This is the complete list of members for GClasses::GNaiveBayes, including all inherited members.

addInterpolatedFunction(double *pOut, size_t nOutVals, double *pIn, size_t nInVals)GClasses::GSupervisedLearnerprotectedstatic
autoTune(GMatrix &features, GMatrix &labels)GClasses::GNaiveBayes
baseDomNode(GDom *pDoc, const char *szClassName) const GClasses::GSupervisedLearnerprotected
basicTest(double minAccuracy1, double minAccuracy2, double deviation=1e-6, bool printAccuracy=false, double warnRange=0.035)GClasses::GSupervisedLearner
beginIncrementalLearning(const GRelation &featureRel, const GRelation &labelRel)GClasses::GIncrementalLearner
beginIncrementalLearning(const GMatrix &features, const GMatrix &labels)GClasses::GIncrementalLearner
beginIncrementalLearningInner(const GRelation &featureRel, const GRelation &labelRel)GClasses::GNaiveBayesprotectedvirtual
GClasses::GIncrementalLearner::beginIncrementalLearningInner(const GMatrix &features, const GMatrix &labels)GClasses::GIncrementalLearnerinlineprotectedvirtual
canGeneralize()GClasses::GSupervisedLearnerinlinevirtual
canImplicitlyHandleContinuousFeatures()GClasses::GNaiveBayesinlineprotectedvirtual
canImplicitlyHandleContinuousLabels()GClasses::GNaiveBayesinlineprotectedvirtual
canImplicitlyHandleMissingFeatures()GClasses::GTransducerinlinevirtual
canImplicitlyHandleNominalFeatures()GClasses::GTransducerinlinevirtual
canImplicitlyHandleNominalLabels()GClasses::GTransducerinlinevirtual
canTrainIncrementally()GClasses::GIncrementalLearnerinlinevirtual
clear()GClasses::GNaiveBayesvirtual
confusion(GMatrix &features, GMatrix &labels, std::vector< GMatrix * > &stats)GClasses::GSupervisedLearner
crossValidate(const GMatrix &features, const GMatrix &labels, size_t nFolds, double *pOutSAE=NULL, RepValidateCallback pCB=NULL, size_t nRep=0, void *pThis=NULL)GClasses::GTransducer
equivalentSampleSize()GClasses::GNaiveBayesinline
GIncrementalLearner()GClasses::GIncrementalLearnerinline
GIncrementalLearner(const GDomNode *pNode)GClasses::GIncrementalLearnerinline
GNaiveBayes()GClasses::GNaiveBayes
GNaiveBayes(const GDomNode *pNode)GClasses::GNaiveBayes
GSupervisedLearner()GClasses::GSupervisedLearner
GSupervisedLearner(const GDomNode *pNode)GClasses::GSupervisedLearner
GTransducer()GClasses::GTransducer
GTransducer(const GTransducer &that)GClasses::GTransducerinline
isFilter()GClasses::GIncrementalLearnerinlinevirtual
m_equivalentSampleSizeGClasses::GNaiveBayesprotected
m_nSampleCountGClasses::GNaiveBayesprotected
m_pOutputsGClasses::GNaiveBayesprotected
m_pRelFeaturesGClasses::GSupervisedLearnerprotected
m_pRelLabelsGClasses::GSupervisedLearnerprotected
m_randGClasses::GTransducerprotected
operator=(const GTransducer &other)GClasses::GTransducerinline
precisionRecall(double *pOutPrecision, size_t nPrecisionSize, GMatrix &features, GMatrix &labels, size_t label, size_t nReps)GClasses::GSupervisedLearner
precisionRecallContinuous(GPrediction *pOutput, double *pFunc, GMatrix &trainFeatures, GMatrix &trainLabels, GMatrix &testFeatures, GMatrix &testLabels, size_t label)GClasses::GSupervisedLearnerprotected
precisionRecallNominal(GPrediction *pOutput, double *pFunc, GMatrix &trainFeatures, GMatrix &trainLabels, GMatrix &testFeatures, GMatrix &testLabels, size_t label, int value)GClasses::GSupervisedLearnerprotected
predict(const GVec &in, GVec &out)GClasses::GNaiveBayesvirtual
predictDistribution(const GVec &in, GPrediction *pOut)GClasses::GNaiveBayesvirtual
rand()GClasses::GTransducerinline
relFeatures()GClasses::GSupervisedLearner
relLabels()GClasses::GSupervisedLearner
repValidate(const GMatrix &features, const GMatrix &labels, size_t reps, size_t nFolds, double *pOutSAE=NULL, RepValidateCallback pCB=NULL, void *pThis=NULL)GClasses::GTransducer
serialize(GDom *pDoc) const GClasses::GNaiveBayesvirtual
setEquivalentSampleSize(double d)GClasses::GNaiveBayesinline
setupFilters(const GMatrix &features, const GMatrix &labels)GClasses::GSupervisedLearnerprotected
sumSquaredError(const GMatrix &features, const GMatrix &labels, double *pOutSAE=NULL)GClasses::GSupervisedLearner
supportedFeatureRange(double *pOutMin, double *pOutMax)GClasses::GTransducerinlinevirtual
supportedLabelRange(double *pOutMin, double *pOutMax)GClasses::GTransducerinlinevirtual
test()GClasses::GNaiveBayesstatic
train(const GMatrix &features, const GMatrix &labels)GClasses::GSupervisedLearner
trainAndTest(const GMatrix &trainFeatures, const GMatrix &trainLabels, const GMatrix &testFeatures, const GMatrix &testLabels, double *pOutSAE=NULL)GClasses::GSupervisedLearnervirtual
trainIncremental(const GVec &in, const GVec &out)GClasses::GNaiveBayesvirtual
trainInner(const GMatrix &features, const GMatrix &labels)GClasses::GNaiveBayesprotectedvirtual
trainSparse(GSparseMatrix &features, GMatrix &labels)GClasses::GNaiveBayesvirtual
transduce(const GMatrix &features1, const GMatrix &labels1, const GMatrix &features2)GClasses::GTransducer
transduceInner(const GMatrix &features1, const GMatrix &labels1, const GMatrix &features2)GClasses::GSupervisedLearnerprotectedvirtual
transductiveConfusionMatrix(const GMatrix &trainFeatures, const GMatrix &trainLabels, const GMatrix &testFeatures, const GMatrix &testLabels, std::vector< GMatrix * > &stats)GClasses::GTransducer
~GIncrementalLearner()GClasses::GIncrementalLearnerinlinevirtual
~GNaiveBayes()GClasses::GNaiveBayesvirtual
~GSupervisedLearner()GClasses::GSupervisedLearnervirtual
~GTransducer()GClasses::GTransducervirtual