addInterpolatedFunction(double *pOut, size_t nOutVals, double *pIn, size_t nInVals) | GClasses::GSupervisedLearner | protectedstatic |
autoFilter() const | GClasses::GNeuralDecomposition | inline |
baseDomNode(GDom *pDoc, const char *szClassName) const | GClasses::GSupervisedLearner | protected |
basicTest(double minAccuracy1, double minAccuracy2, double deviation=1e-6, bool printAccuracy=false, double warnRange=0.035) | GClasses::GSupervisedLearner | |
beginIncrementalLearning(const GRelation &featureRel, const GRelation &labelRel) | GClasses::GIncrementalLearner | |
beginIncrementalLearning(const GMatrix &features, const GMatrix &labels) | GClasses::GIncrementalLearner | |
beginIncrementalLearningInner(const GRelation &featureRel, const GRelation &labelRel) | GClasses::GNeuralDecomposition | protectedvirtual |
GClasses::GIncrementalLearner::beginIncrementalLearningInner(const GMatrix &features, const GMatrix &labels) | GClasses::GIncrementalLearner | inlineprotectedvirtual |
canGeneralize() | GClasses::GSupervisedLearner | inlinevirtual |
canImplicitlyHandleContinuousFeatures() | GClasses::GTransducer | inlinevirtual |
canImplicitlyHandleContinuousLabels() | GClasses::GTransducer | inlinevirtual |
canImplicitlyHandleMissingFeatures() | GClasses::GTransducer | inlinevirtual |
canImplicitlyHandleNominalFeatures() | GClasses::GTransducer | inlinevirtual |
canImplicitlyHandleNominalLabels() | GClasses::GTransducer | inlinevirtual |
canTrainIncrementally() | GClasses::GIncrementalLearner | inlinevirtual |
clear() | GClasses::GNeuralDecomposition | inlinevirtual |
clearFrozen() | GClasses::GNeuralDecomposition | |
confusion(GMatrix &features, GMatrix &labels, std::vector< GMatrix * > &stats) | GClasses::GSupervisedLearner | |
crossValidate(const GMatrix &features, const GMatrix &labels, size_t nFolds, double *pOutSAE=NULL, RepValidateCallback pCB=NULL, size_t nRep=0, void *pThis=NULL) | GClasses::GTransducer | |
epochs() const | GClasses::GNeuralDecomposition | inline |
extrapolate(double start=1.0, double length=1.0, double step=0.0002, bool outputFeatures=false) | GClasses::GNeuralDecomposition | virtual |
extrapolate(const GMatrix &features) | GClasses::GNeuralDecomposition | virtual |
featureBias() const | GClasses::GNeuralDecomposition | inline |
featureScale() const | GClasses::GNeuralDecomposition | inline |
filterLogarithm() const | GClasses::GNeuralDecomposition | inline |
freeze() | GClasses::GNeuralDecomposition | |
GIncrementalLearner() | GClasses::GIncrementalLearner | inline |
GIncrementalLearner(const GDomNode *pNode) | GClasses::GIncrementalLearner | inline |
GNeuralDecomposition() | GClasses::GNeuralDecomposition | |
GNeuralDecomposition(const GDomNode *pNode) | GClasses::GNeuralDecomposition | |
GSupervisedLearner() | GClasses::GSupervisedLearner | |
GSupervisedLearner(const GDomNode *pNode) | GClasses::GSupervisedLearner | |
GTransducer() | GClasses::GTransducer | |
GTransducer(const GTransducer &that) | GClasses::GTransducer | inline |
isFilter() | GClasses::GIncrementalLearner | inlinevirtual |
learningRate() const | GClasses::GNeuralDecomposition | inline |
m_pRelFeatures | GClasses::GSupervisedLearner | protected |
m_pRelLabels | GClasses::GSupervisedLearner | protected |
nn() const | GClasses::GNeuralDecomposition | inline |
operator=(const GTransducer &other) | GClasses::GTransducer | inline |
outputBias() const | GClasses::GNeuralDecomposition | inline |
outputScale() const | GClasses::GNeuralDecomposition | inline |
precisionRecall(double *pOutPrecision, size_t nPrecisionSize, GMatrix &features, GMatrix &labels, size_t label, size_t nReps) | GClasses::GSupervisedLearner | |
precisionRecallContinuous(GPrediction *pOutput, double *pFunc, GMatrix &trainFeatures, GMatrix &trainLabels, GMatrix &testFeatures, GMatrix &testLabels, size_t label) | GClasses::GSupervisedLearner | protected |
precisionRecallNominal(GPrediction *pOutput, double *pFunc, GMatrix &trainFeatures, GMatrix &trainLabels, GMatrix &testFeatures, GMatrix &testLabels, size_t label, int value) | GClasses::GSupervisedLearner | protected |
predict(const GVec &in, GVec &out) | GClasses::GNeuralDecomposition | virtual |
predictDistribution(const GVec &in, GPrediction *pOut) | GClasses::GNeuralDecomposition | virtual |
rand() | GClasses::GTransducer | inline |
regularization() const | GClasses::GNeuralDecomposition | inline |
relFeatures() | GClasses::GSupervisedLearner | |
relLabels() | GClasses::GSupervisedLearner | |
repValidate(const GMatrix &features, const GMatrix &labels, size_t reps, size_t nFolds, double *pOutSAE=NULL, RepValidateCallback pCB=NULL, void *pThis=NULL) | GClasses::GTransducer | |
restoreFrozen() | GClasses::GNeuralDecomposition | |
serialize(GDom *pDoc) const | GClasses::GNeuralDecomposition | virtual |
setAutoFilter(bool auto_Filter) | GClasses::GNeuralDecomposition | inline |
setEpochs(size_t newepochs) | GClasses::GNeuralDecomposition | inline |
setFeatureBias(double newfeatureBias) | GClasses::GNeuralDecomposition | inline |
setFeatureScale(double newfeatureScale) | GClasses::GNeuralDecomposition | inline |
setFilterLogarithm(bool filter_Logarithm) | GClasses::GNeuralDecomposition | inline |
setLearningRate(double newlearningRate) | GClasses::GNeuralDecomposition | inline |
setLinearUnits(size_t linearUnits) | GClasses::GNeuralDecomposition | inline |
setLockPairs(bool lockPairs) | GClasses::GNeuralDecomposition | inline |
setOutputBias(double newoutputBias) | GClasses::GNeuralDecomposition | inline |
setOutputScale(double newoutputScale) | GClasses::GNeuralDecomposition | inline |
setRegularization(double newregularization) | GClasses::GNeuralDecomposition | inline |
setSigmoidUnits(size_t sigmoidUnits) | GClasses::GNeuralDecomposition | inline |
setSinusoidUnits(size_t sinusoidUnits) | GClasses::GNeuralDecomposition | inline |
setSoftplusUnits(size_t softplusUnits) | GClasses::GNeuralDecomposition | inline |
setupFilters(const GMatrix &features, const GMatrix &labels) | GClasses::GSupervisedLearner | protected |
sumSquaredError(const GMatrix &features, const GMatrix &labels, double *pOutSAE=NULL) | GClasses::GSupervisedLearner | |
supportedFeatureRange(double *pOutMin, double *pOutMax) | GClasses::GTransducer | inlinevirtual |
supportedLabelRange(double *pOutMin, double *pOutMax) | GClasses::GTransducer | inlinevirtual |
test() | GClasses::GNeuralDecomposition | static |
train(const GMatrix &features, const GMatrix &labels) | GClasses::GSupervisedLearner | |
trainAndTest(const GMatrix &trainFeatures, const GMatrix &trainLabels, const GMatrix &testFeatures, const GMatrix &testLabels, double *pOutSAE=NULL) | GClasses::GSupervisedLearner | virtual |
trainIncremental(const GVec &in, const GVec &pOut) | GClasses::GNeuralDecomposition | virtual |
trainInner(const GMatrix &features, const GMatrix &labels) | GClasses::GNeuralDecomposition | protectedvirtual |
trainOnSeries(const GMatrix &series) | GClasses::GNeuralDecomposition | virtual |
trainSparse(GSparseMatrix &features, GMatrix &labels) | GClasses::GNeuralDecomposition | virtual |
transduce(const GMatrix &features1, const GMatrix &labels1, const GMatrix &features2) | GClasses::GTransducer | |
transduceInner(const GMatrix &features1, const GMatrix &labels1, const GMatrix &features2) | GClasses::GSupervisedLearner | protectedvirtual |
transductiveConfusionMatrix(const GMatrix &trainFeatures, const GMatrix &trainLabels, const GMatrix &testFeatures, const GMatrix &testLabels, std::vector< GMatrix * > &stats) | GClasses::GTransducer | |
~GIncrementalLearner() | GClasses::GIncrementalLearner | inlinevirtual |
~GNeuralDecomposition() | GClasses::GNeuralDecomposition | virtual |
~GSupervisedLearner() | GClasses::GSupervisedLearner | virtual |
~GTransducer() | GClasses::GTransducer | virtual |