|
GClasses
|
This class uses Expectency Maximization to find the mixture of Gaussians that best approximates the data in a specified real attribute of a data set.
#include <GMixtureOfGaussians.h>
Public Member Functions | |
| GMixtureOfGaussians (int nKernelCount, GMatrix *pData, int nAttribute, double minVariance, GRand *pRand) | |
| virtual | ~GMixtureOfGaussians () |
| double | iterate () |
| Returns the log likelihood of the current parameters. More... | |
| void | params (int nKernel, double *pMean, double *pVariance, double *pWeight) |
| Returns the current parameters of the specified kernel. More... | |
Static Public Member Functions | |
| static GMixtureOfGaussians * | stochasticHammer (int nMinKernelCount, int nMaxKernelCount, int nItters, int nTrials, GMatrix *pData, int nAttribute, double minVariance, GRand *pRand) |
| This tries to fit the data from several random starting points, and returns the best model it finds. More... | |
| static void | test () |
| Performs unit tests for this class. Throws an exception if there is a failure. More... | |
Protected Member Functions | |
| double | evalKernel (double x, int nKernel) |
| double | likelihoodOfEachCategoryGivenThisFeature (double x) |
Protected Attributes | |
| GNormalDistribution | m_dist |
| double | m_dMinVariance |
| int | m_nAttribute |
| int | m_nKernelCount |
| double * | m_pArrMeanVarWeight |
| double * | m_pCatLikelihoods |
| GMatrix * | m_pData |
| double * | m_pTemp |
| GClasses::GMixtureOfGaussians::GMixtureOfGaussians | ( | int | nKernelCount, |
| GMatrix * | pData, | ||
| int | nAttribute, | ||
| double | minVariance, | ||
| GRand * | pRand | ||
| ) |
|
virtual |
|
protected |
| double GClasses::GMixtureOfGaussians::iterate | ( | ) |
Returns the log likelihood of the current parameters.
|
protected |
| void GClasses::GMixtureOfGaussians::params | ( | int | nKernel, |
| double * | pMean, | ||
| double * | pVariance, | ||
| double * | pWeight | ||
| ) |
Returns the current parameters of the specified kernel.
|
static |
This tries to fit the data from several random starting points, and returns the best model it finds.
|
static |
Performs unit tests for this class. Throws an exception if there is a failure.
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |